ﻻ يوجد ملخص باللغة العربية
The Multi-target Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on real-world telephone conversations. Data recordings are generated from call center customer-agent conversations. The task is to measure how accurately one can detect 1) whether a test recording is spoken by a blacklisted speaker, and 2) which specific blacklisted speaker was talking. This paper outlines the challenge and provides its baselines, results, and discussions.
The Multitarget Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on
Multi-task learning (MTL) and attention mechanism have been proven to effectively extract robust acoustic features for various speech-related tasks in noisy environments. In this study, we propose an attention-based MTL (ATM) approach that integrates
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independe
Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker