ﻻ يوجد ملخص باللغة العربية
We establish a time-stepping learning algorithm and apply it to predict the solution of the partial differential equation of motion in micromagnetism as a dynamical system depending on the external field as parameter. The data-driven approach is based on nonlinear model order reduction by use of kernel methods for unsupervised learning, yielding a predictor for the magnetization dynamics without any need for field evaluations after a data generation and training phase as precomputation. Magnetization states from simulated micromagnetic dynamics associated with different external fields are used as training data to learn a low-dimensional representation in so-called feature space and a map that predicts the time-evolution in reduced space. Remarkably, only two degrees of freedom in feature space were enough to describe the nonlinear dynamics of a thin-film element. The approach has no restrictions on the spatial discretization and might be useful for fast determination of the response to an external field.
We establish a machine learning model for the prediction of the magnetization dynamics as function of the external field described by the Landau-Lifschitz-Gilbert equation, the partial differential equation of motion in micromagnetism. The model allo
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data
Machine learning (ML) entered the field of computational micromagnetics only recently. The main objective of these new approaches is the automatization of solutions of parameter-dependent problems in micromagnetism such as fast response curve estimat
We consider the problem of the implementation of Stimulated Raman Adiabatic Passage (STIRAP) processes in degenerate systems, with a view to be able to steer the system wave function from an arbitrary initial superposition to an arbitrary target supe
We show unsupervised machine learning techniques are a valuable tool for both visualizing and computationally accelerating the estimation of galaxy physical properties from photometric data. As a proof of concept, we use self organizing maps (SOMs) t