ﻻ يوجد ملخص باللغة العربية
We study the isotropic elastic wave equation in a bounded domain with boundary with coefficients having jumps at a nested set of interfaces satisfying the natural transmission conditions there. We analyze in detail the microlocal behavior of such solution like reflection, transmission and mode conversion of S and P waves, evanescent modes, Rayleigh and Stoneley waves. In particular, we recover Knotts equations in this setting. We show that knowledge of the Dirichlet-to-Neumann map determines uniquely the speed of the P and the S waves if there is a strictly convex foliation with respect to them, under an additional condition of lack of full internal reflection of some of the waves.
This paper is devoted to studying impedance eigenvalues (that is, eigenvalues of a particular Dirichlet-to-Neumann map) for the time harmonic linear elastic wave problem, and their potential use as target-signatures for fluid-solid interaction proble
We make precise some results on the cloaking of displacement fields in linear elasticity. In the spirit of transformation media theory, the transformed governing equations in Cosserat and Willis frameworks are shown to be equivalent to certain high c
We prove a global uniqueness result for the Calder{o}n inverse problem for a general quasilinear isotropic conductivity equation on a bounded open set with smooth boundary in dimension $nge 3$. Performing higher order linearizations of the nonlinear
We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is
In this note we discuss the (higher) regularity properties of the Signorini problem for the homogeneous, isotropic Lame system. Relying on an observation by Schumann cite{Schumann1}, we reduce the question of the solutions and the free boundary regul