ﻻ يوجد ملخص باللغة العربية
Recent advances in small-scale unmanned aerial vehicles (UAVs) have opened up new horizons for establishing UAV-based free-space optical (FSO) links. However, FSO technology requires precise beam alignment while random fluctuations of hovering UAVs can induce beam misalignment and angle-of-arrival (AoA) fluctuations. For an FSO link to a UAV, we consider a quadrant detector array for optical beam tracking and study the effect of random hovering fluctuations of the UAV on the performance of the tracking method, and based on the degree of instabilities for the UAV, the optimum size of the detectors for minimizing the tracking error is found. Furthermore, for optimal detection of On - Off keying symbols, the receiver requires instantaneous channel fading coefficients. We propose a blind method to estimate the channel coefficients, i.e., without using any pilot symbols, to increase link bandwidth efficiency. To evaluate the performance of the considered system, closed-form expressions of tracking error and bit-error rate are derived. Moreover, Monte-Carlo simulation is carried out to corroborate the accuracy of the derived analytical expressions.
The integration of unmanned aerial vehicles (UAVs) and millimeter wave (mmWave) wireless systems has been recently proposed to provide high data rate aerial links for next generation wireless networks. However, establishing UAV-based mmWave links is
A ground-to-air free-space optical link is studied for a hovering unmanned aerial vehicle (UAV) having multiple rotors. For this UAV, a four-quadrant array of photodetectors is used at the optical receiver to alleviate the adverse effect of hovering
Relay-assisted free-space optical (FSO) communication systems are exploited as a means to mitigate the limiting effects of the turbulence induced atmospheric scintillation. However, conventional ground relays are stationary, and their optimal placeme
UAV communications based on an antenna array entail a beam tracking technology for reliable link acquisition. Unlike conventional cellular communication, beam tracking in UAV communication addresses new issues such as mobility and abrupt channel disc
Deployment of unmanned aerial vehicles (UAVs) is recently getting significant attention due to a variety of practical use cases, such as surveillance, data gathering, and commodity delivery. Since UAVs are powered by batteries, energy efficient commu