ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks

107   0   0.0 ( 0 )
 نشر من قبل Santiago Pascual de la Puente
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning good representations without supervision is still an open issue in machine learning, and is particularly challenging for speech signals, which are often characterized by long sequences with a complex hierarchical structure. Some recent works, however, have shown that it is possible to derive useful speech representations by employing a self-supervised encoder-discriminator approach. This paper proposes an improved self-supervised method, where a single neural encoder is followed by multiple workers that jointly solve different self-supervised tasks. The needed consensus across different tasks naturally imposes meaningful constraints to the encoder, contributing to discover general representations and to minimize the risk of learning superficial ones. Experiments show that the proposed approach can learn transferable, robust, and problem-agnostic features that carry on relevant information from the speech signal, such as speaker identity, phonemes, and even higher-level features such as emotional cues. In addition, a number of design choices make the encoder easily exportable, facilitating its direct usage or adaptation to different problems.



قيم البحث

اقرأ أيضاً

421 - Solene Evain , Ha Nguyen , Hang Le 2021
Self-Supervised Learning (SSL) using huge unlabeled data has been successfully explored for image and natural language processing. Recent works also investigated SSL from speech. They were notably successful to improve performance on downstream tasks such as automatic speech recognition (ASR). While these works suggest it is possible to reduce dependence on labeled data for building efficient speech systems, their evaluation was mostly made on ASR and using multiple and heterogeneous experimental settings (most of them for English). This questions the objective comparison of SSL approaches and the evaluation of their impact on building speech systems. In this paper, we propose LeBenchmark: a reproducible framework for assessing SSL from speech. It not only includes ASR (high and low resource) tasks but also spoken language understanding, speech translation and emotion recognition. We also focus on speech technologies in a language different than English: French. SSL models of different sizes are trained from carefully sourced and documented datasets. Experiments show that SSL is beneficial for most but not all tasks which confirms the need for exhaustive and reliable benchmarks to evaluate its real impact. LeBenchmark is shared with the scientific community for reproducible research in SSL from speech.
333 - Yu-An Chung , Yu Zhang , Wei Han 2021
Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5% to~10% relative WER reduction on the test-clean and test-other subsets. When applied to the Googles Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30% relatively.
Self-supervised pretraining for Automated Speech Recognition (ASR) has shown varied degrees of success. In this paper, we propose to jointly learn representations during pretraining from two different modalities: speech and text. The proposed method, tts4pretrain complements the power of contrastive learning in self-supervision with linguistic/lexical representations derived from synthesized speech, effectively learning from untranscribed speech and unspoken text. Lexical learning in the speech encoder is enforced through an additional sequence loss term that is coupled with contrastive loss during pretraining. We demonstrate that this novel pretraining method yields Word Error Rate (WER) reductions of 10% relative on the well-benchmarked, Librispeech task over a state-of-the-art baseline pretrained with wav2vec2.0 only. The proposed method also serves as an effective strategy to compensate for the lack of transcribed speech, effectively matching the performance of 5000 hours of transcribed speech with just 100 hours of transcribed speech on the AMI meeting transcription task. Finally, we demonstrate WER reductions of up to 15% on an in-house Voice Search task over traditional pretraining. Incorporating text into encoder pretraining is complimentary to rescoring with a larger or in-domain language model, resulting in additional 6% relative reduction in WER.
Supervised learning for single-channel speech enhancement requires carefully labeled training examples where the noisy mixture is input into the network and the network is trained to produce an output close to the ideal target. To relax the condition s on the training data, we consider the task of training speech enhancement networks in a self-supervised manner. We first use a limited training set of clean speech sounds and learn a latent representation by autoencoding on their magnitude spectrograms. We then autoencode on speech mixtures recorded in noisy environments and train the resulting autoencoder to share a latent representation with the clean examples. We show that using this training schema, we can now map noisy speech to its clean version using a network that is autonomously trainable without requiring labeled training examples or human intervention.
Our objective is to transform a video into a set of discrete audio-visual objects using self-supervised learning. To this end, we introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information ove r time. We demonstrate the effectiveness of the audio-visual object embeddings that our model learns by using them for four downstream speech-oriented tasks: (a) multi-speaker sound source separation, (b) localizing and tracking speakers, (c) correcting misaligned audio-visual data, and (d) active speaker detection. Using our representation, these tasks can be solved entirely by training on unlabeled video, without the aid of object detectors. We also demonstrate the generality of our method by applying it to non-human speakers, including cartoons and puppets.Our model significantly outperforms other self-supervised approaches, and obtains performance competitive with methods that use supervised face detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا