ﻻ يوجد ملخص باللغة العربية
The corrections to the $E_2^*$ energy level of hydrogenic impurities in semiconductors with wurtzite crystal structure are calculated using first-order perturbation theory in the envelope-function approximation. We consider the intrinsic (Dresselhaus) spin-orbit effective Hamiltonian in the conduction band and compare its effects to the renormalized extrinsic (Rashba) spin-orbit interaction which is analogous to the spin-orbit interaction in the bare hydrogen atom. In order to evaluate the extrinsic spin-orbit interaction we obtain the renormalized coupling constant $lambda^*$ for wurtzite semiconductors from 8-band Kane theory. We apply our theory to four representative binary semiconductors with wurtzite crystal structure, namely, GaN, ZnO, InN and AlN, and discuss the relative strength of the effects of the intrinsic and extrinsic spin-orbit contributions.
The response of semiconductor materials to external magnetic fields is a reliable approach to probe intrinsic electronic and spin-dependent properties. In this study, we investigate the common Zeeman splitting features of novel wurtzite materials, na
Millikelvin magnetotransport studies are carried out on heavily $n$-doped wurtzite GaN:Si films grown on semi-insulating GaN:Mn buffer layers by metal-organic vapor phase epitaxy. The dependency of the conductivity on magnetic field and temperature i
The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasi-free carriers and magnetic impurities, but also to a local spin-independent disorder potential for the carriers. Based on a quantum kin
We show that the spin-orbit interaction (SOI) produced by the Coulomb fields of charged impurities provides an efficient mechanism for the bound states formation. The mechanism can be realized in 2D materials with sufficiently strong Rashba SOI provi
We explore the impact of a Rashba-type spin-orbit interaction in the conduction band on the spin dynamics of hot excitons in diluted magnetic semiconductor quantum wells. In materials with strong spin-orbit coupling, we identify parameter regimes whe