ﻻ يوجد ملخص باللغة العربية
We study the problem of robust subspace recovery (RSR) in the presence of adversarial outliers. That is, we seek a subspace that contains a large portion of a dataset when some fraction of the data points are arbitrarily corrupted. We first examine a theoretical estimator that is intractable to calculate and use it to derive information-theoretic bounds of exact recovery. We then propose two tractable estimators: a variant of RANSAC and a simple relaxation of the theoretical estimator. The two estimators are fast to compute and achieve state-of-the-art theoretical performance in a noiseless RSR setting with adversarial outliers. The former estimator achieves better theoretical guarantees in the noiseless case, while the latter estimator is robust to small noise, and its guarantees significantly improve with non-adversarial models of outliers. We give a complete comparison of guarantees for the adversarial RSR problem, as well as a short discussion on the estimation of affine subspaces.
We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie a
The subspace approximation problem with outliers, for given $n$ points in $d$ dimensions $x_{1},ldots, x_{n} in R^{d}$, an integer $1 leq k leq d$, and an outlier parameter $0 leq alpha leq 1$, is to find a $k$-dimensional linear subspace of $R^{d}$
In this big data era, we often confront large-scale data in many machine learning tasks. A common approach for dealing with large-scale data is to build a small summary, {em e.g.,} coreset, that can efficiently represent the original input. However,
We propose a distributionally robust classification model with a fairness constraint that encourages the classifier to be fair in view of the equality of opportunity criterion. We use a type-$infty$ Wasserstein ambiguity set centered at the empirical
It is well-known that simple short-sighted algorithms, such as gradient descent, generalize well in the over-parameterized learning tasks, due to their implicit regularization. However, it is unknown whether the implicit regularization of these algor