ﻻ يوجد ملخص باللغة العربية
III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.
Development of scalable quantum photonic technologies requires on-chip integration of components such as photonic crystal cavities and waveguides with nonclassical light sources. Recently, hexagonal boron nitride (hBN) has emerged as a promising plat
On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-
Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride on silicon platform with gallium nitride (GaN) as the main waveguiding layer. The photonic circuits consist of a microdisk and a pulley waveguide te
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed
Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silico