ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-energy self-consistent density functional theory plus dynamical mean field theory

101   0   0.0 ( 0 )
 نشر من قبل Sumanta Bhandary
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a hybrid approach which employs the dynamical mean-field theory (DMFT) self-energy for the correlated, typically rather localized orbitals and a conventional density functional theory (DFT) exchange-correlation potential for the less correlated, less localized orbitals. We implement this self-energy (plus charge density) self-consistent DFT+DMFT scheme in a basis of maximally localized Wannier orbitals using Wien2K, wien2wannier, and the DMFT impurity solver w2dynamics. As a testbed material we apply the method to SrVO$_3$ and report a significant improvement as compared to previous $d$+$p$ calculations. In particular the position of the oxygen $p$ bands is reproduced correctly, which has been a persistent hassle with unwelcome consequences for the $d$-$p$ hybridization and correlation strength. Taking the (linearized) DMFT self-energy also in the Kohn-Sham equation renders the so-called double-counting problem obsolete.



قيم البحث

اقرأ أيضاً

We study effects of charge self-consistency within the combination of density functional theory (DFT; Wien2k) with dynamical mean field theory (DMFT; w2dynamics) in a basis of maximally localized Wannier orbitals. Using the example of two cuprates, w e demonstrate that even if there is only a single Wannier orbital with fixed filling, a noteworthy charge redistribution can occur. This effect stems from a reoccupation of the Wannier orbital in k-space when going from the single, metallic DFT band to the split, insulating Hubbard bands of DMFT. We analyze another charge self-consistency effect beyond moving charge from one site to another: the correlation-enhanced orbital polarization in a freestanding layer of SrVO3.
Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded inte ractions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
In this paper we present an accurate numerical scheme for extracting inter-atomic exchange parameters ($J_{ij}$) of strongly correlated systems, based on first-principles full-potential electronic structure theory. The electronic structure is modelle d with the help of a full-potential linear muffin-tin orbital method. The effects of strong electron correlations are considered within the charge self-consistent density functional theory plus dynamical mean-field theory (DFT+DMFT). The exchange parameters are then extracted using the magnetic force theorem, hence all the calculations are performed within a single computational framework. The method allows to investigate how the $J_{ij}$-parameters are affected by dynamical electron correlations. In addition to describing the formalism and details of the implementation, we also present magnetic properties of a few commonly discussed systems, characterised by different degrees of electron localisation. In bcc Fe we found a minor renormalisation of the $J_{ij}$ interactions once the dynamical correlations are introduced. However, generally, if the magnetic coupling has several competing contributions from different orbitals, the redistribution of the spectral weight and changes in the exchange splitting of these states can lead to a dramatic modification of the total interaction parameter. In NiO we found that both static and dynamical mean-field results provide an adequate description of the exchange interactions, which is somewhat surprising given the fact that these two methods result in quite different electronic structures. By employing Hubbard-I approximation for the treatment of the $4f$ states in hcp Gd we reproduce the experimentally observed multiplet structure. The calculated exchange parameters result to be rather close to the ones obtained by treating the $4f$ electrons as non-interacting core states.
Employing a local formula for the electron-electron interaction energy, we derive a self-consistent approximation for the total energy of a general $N$-electron system. Our scheme works as a local variant of the Thomas-Fermi approximation and yields the total energy and density as a function of the external potential, the number of electrons, and the chemical potential determined upon normalization. Our tests for Hookes atoms, jellium, and model atoms up to $sim 1000$ electrons show that reasonable total energies can be obtained with almost a negligible computational cost. The results are also consistent in the important large-$N$ limit.
199 - Kristjan Haule 2015
We propose a continuum representation of the Dynamical Mean Field Theory, in which we were able to derive an exact overlap between the Dynamical Mean Field Theory and band structure methods, such as the Density Functional Theory. The implementation o f this exact double-counting shows improved agreement between theory and experiment in several correlated solids, such as the transition metal oxides and lanthanides. Previously introduced nominal double-counting is in much better agreement with the exact double-counting than most widely used fully localized limit formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا