ﻻ يوجد ملخص باللغة العربية
The single- and multi- processor cup games can be used to model natural problems in areas such as processor scheduling, deamortization, and buffer management. At the beginning of the single-processor cup game, $n$ cups are initially empty. In each step of the game, a filler distributes $1$ unit of water among the cups, and then an emptier selects a cup and removes $1 + epsilon$ units from that cup. The goal of the emptier is to minimize the amount of water in the fullest cup, also known as the backlog. It is known that the greedy algorithm (i.e., empty the fullest cup) achieves backlog $O(log n)$, and that no deterministic algorithm can do better. We show that the performance of the greedy algorithm can be greatly improved with a small amount of randomization: After any step $i$, and for any $k ge Omega(log epsilon^{-1})$, the emptier achieves backlog at most $O(k)$ with probability at least $1 -O(2^{-2^k})$. Whereas bounds for the single-processor cup game have been known for more than fifteen years, proving nontrivial bounds on backlog for the multi-processor extension has remained open. We present a simple analysis of the greedy algorithm for the multi-processor cup game, establishing a backlog of $O(epsilon^{-1} log n)$, as long as $delta$, the games other speed-augmentation constant, is at least $1/poly(n)$. Turning to randomized algorithms, we encounter an unexpected phenomenon: When the number of processors $p$ is large, the backlog after each step drops to emph{constant} with large probability. Specifically, we show that if $delta$ and $epsilon$ satisfy reasonable constraints, then there exists an algorithm that bounds the backlog after a given step by three or less with probability at least $1 - O(exp(-Omega(epsilon^2 p))$. We further extend the guarantees of our randomized algorithm to consider larger backlogs.
We study the minimum backlog problem (MBP). This online problem arises, e.g., in the context of sensor networks. We focus on two main variants of MBP. The discrete MBP is a 2-person game played on a graph $G=(V,E)$. The player is initially located
We study an optimal targeting problem for super-modular games with binary actions and finitely many players. The considered problem consists in the selection of a subset of players of minimum size such that, when the actions of these players are forc
In this paper, an optimal output consensus problem is studied for discrete-time linear multiagent systems subject to external disturbances. Each agent is assigned with a local cost function which is known only to itself. Distributed protocols are to
We show how two techniques from statistical physics can be adapted to solve a variant of the notorious Unique Games problem, potentially opening new avenues towards the Unique Games Conjecture. The variant, which we call Count Unique Games, is a prom
In this work, we provide faster algorithms for approximating the optimal transport distance, e.g. earth movers distance, between two discrete probability distributions $mu, u in Delta^n$. Given a cost function $C : [n] times [n] to mathbb{R}_{geq 0}