ﻻ يوجد ملخص باللغة العربية
NASAs Transiting Exoplanet Survey Satellite (TESS) presents us with an unprecedented volume of space-based photometric observations that must be analyzed in an efficient and unbiased manner. With at least $sim1,000,000$ new light curves generated every month from full frame images alone, automated planet candidate identification has become an attractive alternative to human vetting. Here we present a deep learning model capable of performing triage and vetting on TESS candidates. Our model is modified from an existing neural network designed to automatically classify Kepler candidates, and is the first neural network to be trained and tested on real TESS data. In triage mode, our model can distinguish transit-like signals (planet candidates and eclipsing binaries) from stellar variability and instrumental noise with an average precision (the weighted mean of precisions over all classification thresholds) of 97.0% and an accuracy of 97.4%. In vetting mode, the model is trained to identify only planet candidates with the help of newly added scientific domain knowledge, and achieves an average precision of 69.3% and an accuracy of 97.8%. We apply our model on new data from Sector 6, and present 288 new signals that received the highest scores in triage and vetting and were also identified as planet candidates by human vetters. We also provide a homogeneously classified set of TESS candidates suitable for future training.
A novel artificial intelligence (AI) technique that uses machine learning (ML) methodologies combines several algorithms, which were developed by ThetaRay, Inc., is applied to NASAs Transiting Exoplanets Survey Satellite (TESS) dataset to identify ex
We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in t
We have adapted the algorithmic tools developed during the Kepler mission to vet the quality of transit-like signals for use on the K2 mission data. Using the four sets of publicly-available lightcurves on MAST, we produced a uniformly-vetted catalog
State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new au
We present results of a study on identifying circumbinary planet candidates that produce multiple transits during one conjunction with eclipsing binary systems. The occurrence of these transits enables us to estimate the candidates orbital periods, w