ﻻ يوجد ملخص باللغة العربية
Enceladus is characterised by a south polar hot spot associated with a large outflow of heat, the source of which remains unclear. We compute the viscous dissipation resulting from tidal and libration forcing in the moons subsurface ocean using the linearised Navier-Stokes equation in a 3-dimensional spherical model. We conclude that libration is the dominant cause of dissipation at the linear order, providing up to about 0.001 GW of heat to the ocean, which remains insufficient to explain the (about) 10 GW observed by Cassini. We also illustrate how resonances with inertial modes can significantly augment the dissipation. Our work is an extension to Rovira-Navarro et al. [2019] to include the effects of libration. The model developed here is readily applicable to the study of other moons and planets.
Seismology was developed on Earth and shaped our model of the Earths interior over the 20th century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have
We study the effect of tidal forcing on gravitational wave signals from tidally relaxed white dwarf pairs in the LISA, DECIGO and BBO frequency band ($0.1-100,{rm mHz}$). We show that for stars not in hydrostatic equilibrium (in their own rotating fr
Tidal interactions in close star-planet or binary star systems may excite inertial waves (their restoring force is the Coriolis force) in the convective region of the stars. The dissipation of these waves plays a prominent role in the long-term orbit
We have advanced the energy and flux budget (EFB) turbulence closure theory that takes into account a two-way coupling between internal gravity waves (IGW) and the shear-free stably stratified turbulence. This theory is based on the budget equation f
Melting beneath mid-ocean ridges occurs over a region that is much broader than the zone of magmatic emplacement to form the oceanic crust. Magma is focused into this zone by lateral transport. This focusing has typically been explained by dynamic pr