ترغب بنشر مسار تعليمي؟ اضغط هنا

Sublinear quantum algorithms for training linear and kernel-based classifiers

203   0   0.0 ( 0 )
 نشر من قبل Tongyang Li
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given $n$ $d$-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin runs in $tilde{O}(n+d)$ time. We design sublinear quantum algorithms for the same task running in $tilde{O}(sqrt{n} +sqrt{d})$ time, a quadratic improvement in both $n$ and $d$. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. As a side result, we also give sublinear quantum algorithms for approximating the equilibria of $n$-dimensional matrix zero-sum games with optimal complexity $tilde{Theta}(sqrt{n})$.



قيم البحث

اقرأ أيضاً

We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_ {xinmathcal{X}}max_{yinmathcal{Y}} y^{top} Ax$ were previously known only for two special cases: (1) $mathcal{Y}$ being the $ell_{1}$-norm unit ball, and (2) $mathcal{X}$ being either the $ell_{1}$- or the $ell_{2}$-norm unit ball. We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed $qin (1,2]$, we solve the matrix game where $mathcal{X}$ is a $ell_{q}$-norm unit ball within additive error $epsilon$ in time $tilde{O}((n+d)/{epsilon^{2}})$. We also provide a corresponding sublinear quantum algorithm that solves the same task in time $tilde{O}((sqrt{n}+sqrt{d})textrm{poly}(1/epsilon))$ with a quadratic improvement in both $n$ and $d$. Both our classical and quantum algorithms are optimal in the dimension parameters $n$ and $d$ up to poly-logarithmic factors. Finally, we propose sublinear classical and quantum algorithms for the approximate Caratheodory problem and the $ell_{q}$-margin support vector machines as applications.
We present classical sublinear-time algorithms for solving low-rank linear systems of equations. Our algorithms are inspired by the HHL quantum algorithm for solving linear systems and the recent breakthrough by Tang of dequantizing the quantum algor ithm for recommendation systems. Let $A in mathbb{C}^{m times n}$ be a rank-$k$ matrix, and $b in mathbb{C}^m$ be a vector. We present two algorithms: a sampling algorithm that provides a sample from $A^{-1}b$ and a query algorithm that outputs an estimate of an entry of $A^{-1}b$, where $A^{-1}$ denotes the Moore-Penrose pseudo-inverse. Both of our algorithms have query and time complexity $O(mathrm{poly}(k, kappa, |A|_F, 1/epsilon),mathrm{polylog}(m, n))$, where $kappa$ is the condition number of $A$ and $epsilon$ is the precision parameter. Note that the algorithms we consider are sublinear time, so they cannot write and read the whole matrix or vectors. In this paper, we assume that $A$ and $b$ come with well-known low-overhead data structures such that entries of $A$ and $b$ can be sampled according to some natural probability distributions. Alternatively, when $A$ is positive semidefinite, our algorithms can be adapted so that the sampling assumption on $b$ is not required.
315 - M. B. Hastings 2019
We present classical and quantum algorithms based on spectral methods for a problem in tensor principal component analysis. The quantum algorithm achieves a quartic speedup while using exponentially smaller space than the fastest classical spectral a lgorithm, and a super-polynomial speedup over classical algorithms that use only polynomial space. The classical algorithms that we present are related to, but slightly different from those presented recently in Ref. 1. In particular, we have an improved threshold for recovery and the algorithms we present work for both even and odd order tensors. These results suggest that large-scale inference problems are a promising future application for quantum computers.
Identifying the best arm of a multi-armed bandit is a central problem in bandit optimization. We study a quantum computational version of this problem with coherent oracle access to states encoding the reward probabilities of each arm as quantum ampl itudes. Specifically, we show that we can find the best arm with fixed confidence using $tilde{O}bigl(sqrt{sum_{i=2}^nDelta^{smash{-2}}_i}bigr)$ quantum queries, where $Delta_{i}$ represents the difference between the mean reward of the best arm and the $i^text{th}$-best arm. This algorithm, based on variable-time amplitude amplification and estimation, gives a quadratic speedup compared to the best possible classical result. We also prove a matching quantum lower bound (up to poly-logarithmic factors).
While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function over an $n$-dimensional convex body using $tilde{O}(n)$ queries to oracles that evaluate the objective function and determine membership in the convex body. This represents a quadratic improvement over the best-known classical algorithm. We also study limitations on the power of quantum computers for general convex optimization, showing that it requires $tilde{Omega}(sqrt n)$ evaluation queries and $Omega(sqrt{n})$ membership queries.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا