ﻻ يوجد ملخص باللغة العربية
Characterizing the importances (i.e., centralities) of nodes in social, biological, and technological networks is a core topic in both network science and data science. We present a linear-algebraic framework that generalizes eigenvector-based centralities, including PageRank and hub/authority scores, to provide a common framework for two popular classes of multilayer networks: multiplex networks (which have layers that encode different types of relationships) and temporal networks (in which the relationships change over time). Our approach involves the study of joint, marginal, and conditional supracentralities that one can calculate from the dominant eigenvector of a supracentrality matrix [Taylor et al., 2017], which couples centrality matrices that are associated with individual network layers. We extend this prior work (which was restricted to temporal networks with layers that are coupled by adjacent-in-time coupling) by allowing the layers to be coupled through a (possibly asymmetric) interlayer-adjacency matrix $tilde{{bf A}}$, where the entry $tilde{A}_{tt} geq 0$ encodes the coupling between layers $t$ and $t$. Our framework provides a unifying foundation for centrality analysis of multiplex and temporal networks; it also illustrates a complicated dependency of the supracentralities on the topology and weights of interlayer coupling. By scaling $tilde{{bf A}}$ by an interlayer-coupling strength $omegage0$ and developing a singular perturbation theory for the limits of weak ($omegato0^+$) and strong coupling ($omegatoinfty$), we also reveal an interesting dependence of supracentralities on the dominant left and right eigenvectors of $tilde{{bf A}}$.
We describe centralities in temporal networks using a supracentrality framework to study centrality trajectories, which characterize how the importances of nodes change in time. We study supracentrality generalizations of eigenvector-based centraliti
Recent progress towards unraveling the hidden geometric organization of real multiplexes revealed significant correlations across the hyperbolic node coordinates in different network layers, which facilitated applications like trans-layer link predic
The modern age of digital music access has increased the availability of data about music consumption and creation, facilitating the large-scale analysis of the complex networks that connect music together. Data about user streaming behaviour, and th
In network science complex systems are represented as a mathematical graphs consisting of a set of nodes representing the components and a set of edges representing their interactions. The framework of networks has led to significant advances in the
Network alignment consists of finding a structure-preserving correspondence between the nodes of two correlated, but not necessarily identical, networks. This problem finds applications in a wide variety of fields, from the alignment of proteins in c