ﻻ يوجد ملخص باللغة العربية
We investigate the chemical potential and baryon number density of the hadron-quark phase transition in neutron star matter. The hadron matter is described with relativistic mean field theory, and the quark matter is described with the Dyson-Schwinger equation approach of QCD. In order to study the first-order phase transition, we develop the sound speed interpolation scheme to construct the equation of state in the middle density region where the hadron phase and quark phase coexist. The phase transition chemical potential is constrained with the maximum mass, the tidal deformability and the radius of neutrons stars. And the most probable value of the phase transition chemical potential is found.
We propose a scheme to determine the chemical potential and baryon number density of the hadron-quark phase transition in cold dense strong interaction matter (compact star matter). The hadron matter is described with the relativistic mean field theo
In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal e
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used
Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark
We investigate the in-medium modification of pseudoscalar and vector mesons in a QCD motivated chiral quark model by solving the Dyson-Schwinger equations for quarks and mesons at finite temperature for a wide mass range of meson masses, from light (