ﻻ يوجد ملخص باللغة العربية
With the theory of general relativity, Einstein abolished the interpretation of gravitation as a force and associated it to the curvature of spacetime. Tensorial calculus and differential geometry are the mathematical resources necessary to study the spacetime manifold in the context of Einsteins theory. In 1961, Tullio Regge published a work on which he uses the old idea of triangulation of surfaces aiming the description of curvature, and, therefore, gravitation, through the use of discrete calculus. In this paper, we approach Regge Calculus pedagogically, as well as the main results towards a discretized version of Einsteins theory of gravitation.
In Regge calculus the space-time manifold is approximated by certain abstract simplicial complex, called a pseudo-manifold, and the metric is approximated by an assignment of a length to each 1-simplex. In this paper for each pseudomanifold we constr
I exhibit the conflicting roles of Noethers two great theorems in defining conserved quantities, especially Energy in General Relativity and its extensions: It is the breaking of coordinate invariance through boundary conditions that removes the barr
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a caus
A summary is given of recent exact results concerning the functional integration measure in Regge gravity.
We discuss the evolution of the universe in the context of the second law of thermodynamics from its early stages to the far future. Cosmological observations suggest that most matter and radiation will be absorbed by the cosmological horizon. On the