ﻻ يوجد ملخص باللغة العربية
The mixed spin-(1/2, 3/2) Ising model on a decorated square lattice, which takes into account lattice vibrations of the spin-3/2 decorating magnetic ions at a quantum-mechanical level under the assumption of a perfect lattice rigidity of the spin-1/2 nodal magnetic ions, is examined via an exact mapping correspondence with the effective spin-1/2 Ising model on a square lattice. Although the considered magnetic structure is in principle unfrustrated due to bipartite nature of a decorated square lattice, the model under investigation may display anomalous spin frustration driven by a magnetoelastic coupling. It turns out that the magnetoelastic coupling is a primary cause for existence of the frustrated antiferromagnetic phases, which exhibit a peculiar coexistence of antiferromagnetic long-range order of the nodal spins with a partial disorder of the decorating spins with possible reentrant critical behaviour. Under certain conditions, the anomalous spin frustration caused by the magnetoelastic coupling is responsible for unprecedented absence of spontaneous long-range order in the mixed-spin Ising model composed from half-odd-integer spins only.
The mixed spin-1/2 and spin-S Ising model on a decorated planar lattice accounting for lattice vibrations of decorating atoms is treated by making use of the canonical coordinate transformation, the decoration-iteration transformation, and the harmon
A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero in a classical ferromagnetic
The mixed spin-1/2 and spin-1 Ising model on the Bethe lattice with both uniaxial as well as biaxial single-ion anisotropy terms is exactly solved by combining star-triangle and triangle-star mapping transformations with exact recursion relations. Ma
Mixed-spin Ising model on a decorated Bethe lattice is rigorously solved by combining the decoration-iteration transformation with the method of exact recursion relations. Exact results for critical lines, compensation temperatures, total and sublatt
The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase