ﻻ يوجد ملخص باللغة العربية
We consider design of skyport locations for air taxis accessing airports and adopt a novel use of the classic hub location problem to properly make trade-offs on access distances for travelers to skyports from other zones, which is shown to reduce costs relative to a clustering approach from the literature. Extensive experiments on data from New York City show the method outperforms the benchmark clustering method by more than 7.4% here. Results suggest that six skyports located between Manhattan and Brooklyn can adequately serve the airport access travel needs and are sufficiently stable against travel time or transfer time increases.
Full truckload transportation (FTL) in the form of freight containers represents one of the most important transportation modes in international trade. Due to large volume and scale, in FTL, delivery time is often less critical but cost and service q
This research focuses on predicting the demand for air taxi urban air mobility (UAM) services during different times of the day in various geographic regions of New York City using machine learning algorithms (MLAs). Several ride-related factors (suc
We present a model to describe the inbound air traffic over a congested hub. We show that this model gives a very accurate description of the traffic by the comparison of our theoretical distribution of the queue with the actual distribution observed
Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commo
We study the extent to which we can infer users geographical locations from social media. Location inference from social media can benefit many applications, such as disaster management, targeted advertising, and news content tailoring. The challenge