ﻻ يوجد ملخص باللغة العربية
We propose a novel generative adversarial network (GAN) for the task of unsupervised learning of 3D representations from natural images. Most generative models rely on 2D kernels to generate images and make few assumptions about the 3D world. These models therefore tend to create blurry images or artefacts in tasks that require a strong 3D understanding, such as novel-view synthesis. HoloGAN instead learns a 3D representation of the world, and to render this representation in a realistic manner. Unlike other GANs, HoloGAN provides explicit control over the pose of generated objects through rigid-body transformations of the learnt 3D features. Our experiments show that using explicit 3D features enables HoloGAN to disentangle 3D pose and identity, which is further decomposed into shape and appearance, while still being able to generate images with similar or higher visual quality than other generative models. HoloGAN can be trained end-to-end from unlabelled 2D images only. Particularly, we do not require pose labels, 3D shapes, or multiple views of the same objects. This shows that HoloGAN is the first generative model that learns 3D representations from natural images in an entirely unsupervised manner.
We present BlockGAN, an image generative model that learns object-aware 3D scene representations directly from unlabelled 2D images. Current work on scene representation learning either ignores scene background or treats the whole scene as one object
We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to di
Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach
Face images are subject to many different factors of variation, especially in unconstrained in-the-wild scenarios. For most tasks involving such images, e.g. expression recognition from video streams, having enough labeled data is prohibitively expen
Contrastive self-supervised learning has largely narrowed the gap to supervised pre-training on ImageNet. However, its success highly relies on the object-centric priors of ImageNet, i.e., different augmented views of the same image correspond to the