Scrutiny of stagnation region flow in a nanofluid suspended permeable medium due to inconsistent heat source/sink


الملخص بالإنكليزية

In present analysis, nanofluid transport near to a stagnation region over a bidirectionally deforming surface is scrutinized. The region is embedded with Darcy-Forchheimer medium which supports permeability. The porous matrix is suspended with nanofluid, and surface is under the influence of inconsistent heat source/sink. Using similarity functions, framed governing equations are switched to a collection of ordinary differential equations. Output is procured via optimal homotopy asymptotic method (OHAM). Basic notion of OHAM for a vector differential set-up is presented along with required convergence theorems. At different flow stagnation strengths, nanofluid behavior is investigated with respect to variations in porosity parameter, Forchheimer number, Brownian motion, stretching ratio, thermophoretic force, heat source/sink and Schimdt number. Stagnation flow strength invert the pattern of boundary layer profiles of primary velocity. Heat transfer has straightforward relation with Forchheimer number when stagnation forces dominate stretching forces

تحميل البحث