ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepLight: Learning Illumination for Unconstrained Mobile Mixed Reality

455   0   0.0 ( 0 )
 نشر من قبل Chloe LeGendre
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the cameras FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes.



قيم البحث

اقرأ أيضاً

We present a learning-based technique for estimating high dynamic range (HDR), omnidirectional illumination from a single low dynamic range (LDR) portrait image captured under arbitrary indoor or outdoor lighting conditions. We train our model using portrait photos paired with their ground truth environmental illumination. We generate a rich set of such photos by using a light stage to record the reflectance field and alpha matte of 70 diverse subjects in various expressions. We then relight the subjects using image-based relighting with a database of one million HDR lighting environments, compositing the relit subjects onto paired high-resolution background imagery recorded during the lighting acquisition. We train the lighting estimation model using rendering-based loss functions and add a multi-scale adversarial loss to estimate plausible high frequency lighting detail. We show that our technique outperforms the state-of-the-art technique for portrait-based lighting estimation, and we also show that our method reliably handles the inherent ambiguity between overall lighting strength and surface albedo, recovering a similar scale of illumination for subjects with diverse skin tones. We demonstrate that our method allows virtual objects and digital characters to be added to a portrait photograph with consistent illumination. Our lighting inference runs in real-time on a smartphone, enabling realistic rendering and compositing of virtual objects into live video for augmented reality applications.
The representation of consistent mixed reality (XR) environments requires adequate real and virtual illumination composition in real-time. Estimating the lighting of a real scenario is still a challenge. Due to the ill-posed nature of the problem, cl assical inverse-rendering techniques tackle the problem for simple lighting setups. However, those assumptions do not satisfy the current state-of-art in computer graphics and XR applications. While many recent works solve the problem using machine learning techniques to estimate the environment light and scenes materials, most of them are limited to geometry or previous knowledge. This paper presents a CNN-based model to estimate complex lighting for mixed reality environments with no previous information about the scene. We model the environment illumination using a set of spherical harmonics (SH) environment lighting, capable of efficiently represent area lighting. We propose a new CNN architecture that inputs an RGB image and recognizes, in real-time, the environment lighting. Unlike previous CNN-based lighting estimation methods, we propose using a highly optimized deep neural network architecture, with a reduced number of parameters, that can learn high complex lighting scenarios from real-world high-dynamic-range (HDR) environment images. We show in the experiments that the CNN architecture can predict the environment lighting with an average mean squared error (MSE) of um{7.85e-04} when comparing SH lighting coefficients. We validate our model in a variety of mixed reality scenarios. Furthermore, we present qualitative results comparing relights of real-world scenes.
We present a deep learning solution for estimating the incident illumination at any 3D location within a scene from an input narrow-baseline stereo image pair. Previous approaches for predicting global illumination from images either predict just a s ingle illumination for the entire scene, or separately estimate the illumination at each 3D location without enforcing that the predictions are consistent with the same 3D scene. Instead, we propose a deep learning model that estimates a 3D volumetric RGBA model of a scene, including content outside the observed field of view, and then uses standard volume rendering to estimate the incident illumination at any 3D location within that volume. Our model is trained without any ground truth 3D data and only requires a held-out perspective view near the input stereo pair and a spherical panorama taken within each scene as supervision, as opposed to prior methods for spatially-varying lighting estimation, which require ground truth scene geometry for training. We demonstrate that our method can predict consistent spatially-varying lighting that is convincing enough to plausibly relight and insert highly specular virtual objects into real images.
In recent years, there has been an increasing interest in the use of robotic technology at home. A number of service robots appeared on the market, supporting customers in the execution of everyday tasks. Roughly at the same time, consumer level robo ts started to be used also as toys or gaming companions. However, gaming possibilities provided by current off-the-shelf robotic products are generally quite limited, and this fact makes them quickly loose their attractiveness. A way that has been proven capable to boost robotic gaming and related devices consists in creating playful experiences in which physical and digital elements are combined together using Mixed Reality technologies. However, these games differ significantly from digital- or physical only experiences, and new design principles are required to support developers in their creative work. This papers addresses such need, by drafting a set of guidelines which summarize developments carried out by the research community and their findings.
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model th e density and color of a scene as a function of 3D coordinates. While NeRF works well on images of static subjects captured under controlled settings, it is incapable of modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable illumination or transient occluders. We introduce a series of extensions to NeRF to address these issues, thereby enabling accurate reconstructions from unstructured image collections taken from the internet. We apply our system, dubbed NeRF-W, to internet photo collections of famous landmarks, and demonstrate temporally consistent novel view renderings that are significantly closer to photorealism than the prior state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا