ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain-based Lightweight Authentication Mechanism for Vehicular Fog Infrastructure

89   0   0.0 ( 0 )
 نشر من قبل Sahil Garg
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the increasing development of advanced communication technologies, vehicles are becoming smarter and more connected. Due to the tremendous growth of various vehicular applications, a huge amount of data is generated through advanced on-board devices and is deemed critical to improve driving safety and enhance vehicular services. However, cloud based models often fall short in applications where latency and mobility are critical. In order to fully realize the potential of vehicular networks, the challenges of efficient communication and computation need to be addressed. In this direction, vehicular fog computing (VFC) has emerged which extends the concept of fog computing to conventional vehicular networks. It is a geographically distributed paradigm that has the potential to conduct time-critical and data-intensive tasks by pushing intelligence (i.e. computing resources, storage, and application services) in the vicinity of end vehicles. However secure and reliable transmission are of significant importance in highly-mobile vehicular networks in order to ensure the optimal Quality of Service (QoS). In this direction, several authentication mechanisms have been proposed in the literature but most of them are found unfit due to absence of decentralization, anonymity, and trust characteristics. Thus, an effective cross-datacenter authentication and key-exchange scheme based on blockchain and elliptic curve cryptography (ECC) is proposed in this paper. Here, the distributed ledger of blockchain is used for maintaining the network information while the highly secure ECC is employed for mutual authentication between vehicles and road side units (RSUs). Additionally, the proposed scheme is lightweight and scalable for the considered VFC setup. The performance evaluation results against the existing state-of-the-art reveal that the proposed scheme accomplishes enhanced security features.



قيم البحث

اقرأ أيضاً

Vehicle-to-grid (V2G) networks have emerged as a new technology in modern electric power transmission networks. It allows bi-directional flow of communication and electricity between electric vehicles (EVs) and the Smart Grid (SG), in order to provid e more sophisticated energy trading. However, due to the involvement of a huge amount of trading data and the presence of untrusted entities in the visiting networks, the underlying V2G infrastructure suffers from various security and privacy challenges. Although, several solutions have been proposed in the literature to address these problems, issues like lack of mutual authentication and anonymity, incapability to protect against several attack vectors, generation of huge overhead, and dependency on centralized infrastructures make security and privacy issues even more challenging. To address the above mentioned problems, in this paper, we propose a blockchain oriented hierarchical authentication mechanism for rewarding EVs. The overall process is broadly classified into the following phases: 1) System Initialization, 2) Registration, 3) Hierarchical Mutual Authentication, and 4) Consensus; wherein blockchains distributed ledger has been employed for transaction execution in distributed V2G environments while Elliptic curve cryptography (ECC) has been used for hierarchical authentication. The designed hierarchical authentication mechanism has been employed to preserve the anonymity of EVs and support mutual authentication between EVs, charging stations (CSs) and the central aggregator (CAG). Additionally, it also supports minimal communicational and computational overheads on resource constrained EVs. Further, formal security verification of the proposed scheme on widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool validates its safeness against different security attacks.
With the advent of the Internet-of-Things (IoT), vehicular networks and cyber-physical systems, the need for real-time data processing and analysis has emerged as an essential pre-requite for customers satisfaction. In this direction, Mobile Edge Com puting (MEC) provides seamless services with reduced latency, enhanced mobility, and improved location awareness. Since MEC has evolved from Cloud Computing, it inherited numerous security and privacy issues from the latter. Further, decentralized architectures and diversified deployment environments used in MEC platforms also aggravate the problem; causing great concerns for the research fraternity. Thus, in this paper, we propose an efficient and lightweight mutual authentication protocol for MEC environments; based on Elliptic Curve Cryptography (ECC), one-way hash functions and concatenation operations. The designed protocol also leverages the advantages of discrete logarithm problems, computational Diffie-Hellman, random numbers and time-stamps to resist various attacks namely-impersonation attacks, replay attacks, man-in-the-middle attacks, etc. The paper also presents a comparative assessment of the proposed scheme relative to the current state-of-the-art schemes. The obtained results demonstrate that the proposed scheme incurs relatively less communication and computational overheads, and is appropriate to be adopted in resource constraint MEC environments.
In this paper, we provide detailed analysis of the achievable throughput of infrastructure-based vehicular network with a finite traffic density under a cooperative communication strategy, which explores combined use of vehicle-to-infrastructure (V2I ) communications, vehicle-to-vehicle (V2V) communications, mobility of vehicles and cooperations among vehicles and infrastructure to facilitate the data transmission. A closed form expression of the achievable throughput is obtained, which reveals the relationship between the achievable throughput and its major performance-impacting parameters such as distance between adjacent infrastructure points, radio ranges of infrastructure and vehicles, transmission rates of V2I and V2V communications and vehicular density. Numerical and simulation results show that the proposed cooperative communication strategy significantly increases the throughput of vehicular networks, compared with its non-cooperative counterpart, even when the traffic density is low. Our results shed insight on the optimum deployment of vehicular network infrastructure and optimum design of cooperative communication strategies in vehicular networks to maximize the throughput.
Blockchain has revolutionized how transactions are conducted by ensuring secure and auditable peer-to-peer coordination. This is due to both the development of decentralization, and the promotion of trust among peers. Blockchain and fog computing are currently being evaluated as potential support for software and a wide spectrum of applications, ranging from banking practices and digital transactions to cyber-physical systems. These systems are designed to work in highly complex, sometimes even adversarial, environments, and to synchronize heterogeneous machines and manufacturing facilities in cyber computational space, and address critical challenges such as computational complexity, security, trust, and data management. Coupling blockchain with fog computing technologies has the potential to identify and overcome these issues. Thus, this paper presents the knowledge of blockchain and fog computing required to improve cyber-physical systems in terms of quality-of-service, data storage, computing and security.
Quantum key distribution (QKD) enables unconditionally secure communication between distinct parties using a quantum channel and an authentic public channel. Reducing the portion of quantum-generated secret keys, that is consumed during the authentic ation procedure, is of significant importance for improving the performance of QKD systems. In the present work, we develop a lightweight authentication protocol for QKD based on a `ping-pong scheme of authenticity check for QKD. An important feature of this scheme is that the only one authentication tag is generated and transmitted during each of the QKD post-processing rounds. For the tag generation purpose, we design an unconditionally secure procedure based on the concept of key recycling. The procedure is based on the combination of almost universal$_2$ polynomial hashing, XOR universal$_2$ Toeplitz hashing, and one-time pad (OTP) encryption. We demonstrate how to minimize both the length of the recycled key and the size of the authentication key, that is required for OTP encryption. As a result, in real case scenarios, the portion of quantum-generated secret keys that is consumed for the authentication purposes is below 1%. Finally, we provide a security analysis of the full quantum key growing process in the framework of universally composable security.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا