ترغب بنشر مسار تعليمي؟ اضغط هنا

HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models

63   0   0.0 ( 0 )
 نشر من قبل Sharon Zhou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative models often use human evaluations to measure the perceived quality of their outputs. Automated metrics are noisy indirect proxies, because they rely on heuristics or pretrained embeddings. However, up until now, direct human evaluation strategies have been ad-hoc, neither standardized nor validated. Our work establishes a gold standard human benchmark for generative realism. We construct Human eYe Perceptual Evaluation (HYPE) a human benchmark that is (1) grounded in psychophysics research in perception, (2) reliable across different sets of randomly sampled outputs from a model, (3) able to produce separable model performances, and (4) efficient in cost and time. We introduce two variants: one that measures visual perception under adaptive time constraints to determine the threshold at which a models outputs appear real (e.g. 250ms), and the other a less expensive variant that measures human error rate on fake and real images sans time constraints. We test HYPE across six state-of-the-art generative adversarial networks and two sampling techniques on conditional and unconditional image generation using four datasets: CelebA, FFHQ, CIFAR-10, and ImageNet. We find that HYPE can track model improvements across training epochs, and we confirm via bootstrap sampling that HYPE rankings are consistent and replicable.



قيم البحث

اقرأ أيضاً

Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in which the body pose and the visual appearance are disentangled. Such a disentanglement allows independent manipulation of pose and appearance, and hence enables applications such as pose-transfer without specific training for such a task. Our proposed models, the Conditional-DGPose and the Semi-DGPose, have different characteristics. In the first, body pose labels are taken as conditioners, from a fully-supervised training set. In the second, our structured semi-supervised approach allows for pose estimation to be performed by the model itself and relaxes the need for labelled data. Therefore, the Semi-DGPose aims for the joint understanding and generation of people in images. It is not only capable of mapping images to interpretable latent representations but also able to map these representations back to the image space. We compare our models with relevant baselines, the ClothNet-Body and the Pose Guided Person Generation networks, demonstrating their merits on the Human3.6M, ChictopiaPlus and DeepFashion benchmarks.
Object handover is a common human collaboration behavior that attracts attention from researchers in Robotics and Cognitive Science. Though visual perception plays an important role in the object handover task, the whole handover process has been spe cifically explored. In this work, we propose a novel rich-annotated dataset, H2O, for visual analysis of human-human object handovers. The H2O, which contains 18K video clips involving 15 people who hand over 30 objects to each other, is a multi-purpose benchmark. It can support several vision-based tasks, from which, we specifically provide a baseline method, RGPNet, for a less-explored task named Receiver Grasp Prediction. Extensive experiments show that the RGPNet can produce plausible grasps based on the givers hand-object states in the pre-handover phase. Besides, we also report the hand and object pose errors with existing baselines and show that the dataset can serve as the video demonstrations for robot imitation learning on the handover task. Dataset, model and code will be made public.
226 - Zeeshan Ahmad , Naimul Khan 2021
Convolutional Neural Networks (CNNs) are successful deep learning models in the field of computer vision. To get the maximum advantage of CNN model for Human Action Recognition (HAR) using inertial sensor data, in this paper, we use 4 types of spatia l domain methods for transforming inertial sensor data to activity images, which are then utilized in a novel fusion framework. These four types of activity images are Signal Images (SI), Gramian Angular Field (GAF) Images, Markov Transition Field (MTF) Images and Recurrence Plot (RP) Images. Furthermore, for creating a multimodal fusion framework and to exploit activity image, we made each type of activity images multimodal by convolving with two spatial domain filters : Prewitt filter and High-boost filter. Resnet-18, a CNN model, is used to learn deep features from multi-modalities. Learned features are extracted from the last pooling layer of each ReNet and then fused by canonical correlation based fusion (CCF) for improving the accuracy of human action recognition. These highly informative features are served as input to a multiclass Support Vector Machine (SVM). Experimental results on three publicly available inertial datasets show the superiority of the proposed method over the current state-of-the-art.
Standard lossy image compression algorithms aim to preserve an images appearance, while minimizing the number of bits needed to transmit it. However, the amount of information actually needed by a user for downstream tasks -- e.g., deciding which pro duct to click on in a shopping website -- is likely much lower. To achieve this lower bitrate, we would ideally only transmit the visual features that drive user behavior, while discarding details irrelevant to the users decisions. We approach this problem by training a compression model through human-in-the-loop learning as the user performs tasks with the compressed images. The key insight is to train the model to produce a compressed image that induces the user to take the same action that they would have taken had they seen the original image. To approximate the loss function for this model, we train a discriminator that tries to distinguish whether a users action was taken in response to the compressed image or the original. We evaluate our method through experiments with human participants on four tasks: reading handwritten digits, verifying photos of faces, browsing an online shopping catalogue, and playing a car racing video game. The results show that our method learns to match the users actions with and without compression at lower bitrates than baseline methods, and adapts the compression model to the users behavior: it preserves the digit number and randomizes handwriting style in the digit reading task, preserves hats and eyeglasses while randomizing faces in the photo verification task, preserves the perceived price of an item while randomizing its color and background in the online shopping task, and preserves upcoming bends in the road in the car racing game.
Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies, such as transformations including scaling, shifting and interpolating, require hyperparameter optimization that can easily cost hundreds of GPU hours. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN) that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. The proposed data augmentation strategy is fast to train and the synthetic data leads to higher recognition accuracy than using data augmented with a classical approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا