ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-outcome homodyne detection in a coherent-state light interferometer

83   0   0.0 ( 0 )
 نشر من قبل Guang-Ri Jin Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cram{e}r-Rao bound plays a central role in both classical and quantum parameter estimation, but finding the observable and the resulting inversion estimator that saturates this bound remains an open issue for general multi-outcome measurements. Here we consider multi-outcome homodyne detection in a coherent-light Mach-Zehnder interferometer and construct a family of inversion estimators that almost saturate the Cram{e}r-Rao bound over the whole range of phase interval. This provides a clue on constructing optimal inversion estimators for phase estimation and other parameter estimation in any multi-outcome measurement.



قيم البحث

اقرأ أيضاً

240 - Jaewan Kim , Juhui Lee , Se-Wan Ji 2010
Defining a computational basis of pseudo-number states, we interpret a coherent state of large amplitude, $|alpha|ggfrac{d}{2pi}$, as a qudit --- a $d$-level quantum system --- in a state that is an even superposition of $d$ pseudo-number states. A p air of such coherent-state qudits can be prepared in maximally entangled state by generalized Controlled-$Z$ operation that is based on cross-Kerr nonlinearity, which can be weak for large $d$. Hence, a coherent-state optical qudit cluster state can be prepared by repetitive application of the generalized Controlled-$Z$ operation to a set of coherent states. We thus propose an optical qudit teleportation as a simple demonstration of cluster state quantum computation.
125 - Dong Li , Chun-Hua Yuan , Z. Y. Ou 2013
We theoretically study the phase sensitivity of the SU(1,1) interferometer with a coherent light together with a squeezed vacuum input case using the method of homodyne. We find that the homodyne detection has better sensitivity than the intensity de tection under this input case. For a certain intensity of coherent light (squeezed light) input, the relative phase sensitivity is not always better with increasing the squeezed strength (coherent light strength). The phase sensitivity can reach the Heisenberg limit only under a certain moderate parameter interval, which can be realized with current experiment ability.
There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beers law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.
We propose an innovative strategy to discriminate between two coherent states affected by either uniform or gaussian phase noise. The strategy is based on a homodyne-like detection scheme with photon-number-resolving detectors in the regime of low-in tensity local oscillator. The experimental implementation of the detection scheme involves two hybrid photodetectors, whose outputs are used in post processing to calculate the shot-by-shot photon-number difference. The performance of this strategy is quantified in terms of the error probability in discriminating the noisy coherent signals as a function of the characteristic noise parameters.
Controlling the quadrature measured by a homodyne detector is a universal task in continuous-variable quantum optics. However, deriving an error signal that is linear across theentire range of quadrature angles remains an open experimental problem. H ere we propose a scheme to produce such an error signal through the use of a universally tunable modulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا