ﻻ يوجد ملخص باللغة العربية
In our publication from 8 years ago (Phys. Rev. B {bf 84}, 115119 (2011)) we calculated RKKY interaction between two magnetic impurities adsorbed on graphene at zero temperature. We show in this short paper that the approach based on Matsubara formalism and perturbation theory for the thermodynamic potential in the imaginary time and coordinate representation which was used then, can be easily generalized, and calculate RKKY interaction between the magnetic impurities at finite temperature.
We demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene can be strongly modified by a time-periodic driving field even in the weak drive regime. This effect is due to the opening of a dynamical band gap at the Dirac point
Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
We propose an RKKY-type interaction that is mediated by a spin liquid. If a spin liquid ground state exists such an interaction could leave a fingerprint by ordering underlying localized moments such as nuclear spins. This interaction has a unique ph
We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities in both Dirac and Weyl semimetals (SMs). We find that the internode process, as well as the unique three-dimensional spin-momentum locking, has si