ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrostatic equilibrium configurations of neutron stars in a non-minimal geometry-matter coupling theory of gravity

139   0   0.0 ( 0 )
 نشر من قبل Geanderson Carvalho
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we analyze hydrostatic equilibrium configurations of neutron stars in a non-minimal geometry-matter coupling (GMC) theory of gravity. We begin with the derivation of the hydrostatic equilibrium equations for the $f(R,L) $ gravity theory, where $R$ and $L$ are the Ricci scalar and Lagrangian of matter, respectively. We assume $f(R,L)=R/2+[1+sigma R]L$, with $sigma$ constant. To describe matter inside neutron stars we assume the polytropic equation of state $p=K rho^{gamma}$, with $K$ and $gamma = 5/3 $ being constants. We show that in this theory it is possible to reach the mass of massive pulsars such as PSR J2215+5135. As a feature of the GMC theory, very compact neutron stars with radius $sim8$km and $Msim 2.6M_odot$ are stable, thus surpassing the Buchdal and Schwarzschild radius limits. Moreover, the referred stellar diameter is obtained within the range of observational data.



قيم البحث

اقرأ أيضاً

We construct a cosmological model from the inception of the Friedmann-Lem^aitre-Robertson-Walker metric into the field equations of the $f(R,L_m)$ gravity theory, with $R$ being the Ricci scalar and $L_m$ being the matter lagrangian density. The form alism is developed for a particular $f(R,L_m)$ function, namely $R/16pi +(1+sigma R)L_{m}$, with $sigma$ being a constant that carries the geometry-matter coupling. Our solutions are remarkably capable of evading the Big-Bang singularity as well as predict the cosmic acceleration with no need for the cosmological constant, but simply as a consequence of the geometry-matter coupling terms in the Friedmann-like equations.
We investigate the nonrotating neutron stars in $f(T)$ gravity with $f(T)=T+alpha T^2$, where $T$ is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the $f(T)$ modification on the models of neutron stars. For positive $alpha$, the modification results in a stronger gravitation exerted on the stellar matter, leading to a smaller stellar mass in comparison to general relativity. Moreover, there seems to be an upper limit for the central density of the neutron stars with $alpha>0$, beyond which the effective $f(T)$ fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. For negative $alpha$, the $f(T)$ modification provides additional support for neutron stars to contain larger amount of matter. We obtain the mass-radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For BSk19 equation of state, the neutron star model in $f(T)$ gravity can accommodate all the mentioned data when $alphale 3.5 G^2M_odot^2/c^4$. For BSk20, BSk21 and SLy equations of state, the observational data constrain the model parameter $alpha$ to be negative. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints for BSk20 and BSk21 models can be loosened to $alphale 0.4 G^2M_odot^2/c^4$ and $alphale 1.9 G^2M_odot^2/c^4$, respectively.
In this paper we investigate the asymptotic dynamics of inflationary cosmological models that are based in scalar-tensor theories of gravity. Our main aim is to explore the global structure of the phase space in the framework of single-field inflatio n models. For this purpose we make emphasis in the adequate choice of the variables of the phase space. Our results indicate that, although single-field inflation is generic in the sense that the corresponding critical point in the phase space exists for a wide class of potentials, along given phase space orbits -- representing potential cosmic histories -- the occurrence of the inflationary stage is rather dependent on the initial conditions. We have been able to give quantitative estimates of the relative probability (RP) for initial conditions leading to slow-roll inflation. For the non-minimal coupling model with the $phi^2$-potential our rough estimates yield to an almost vanishing relative probability: $10^{-13},%lesssim RPll 10^{-8},%$. These bonds are greatly improved in the scalar-tensor models, including the Brans-Dicke theory, where the relative probability $1,%lesssim RPleq 100,%$. Hence slow-roll inflation is indeed a natural stage of the cosmic expansion in Brans-Dicke models of inflation. It is confirmed as well that the dynamics of vacuum Brans-Dicke theories with arbitrary potentials are non-chaotic.
We compute families of spherically symmetric neutron-star models in two-derivative scalar-tensor theories of gravity with a massive scalar field. The numerical approach we present allows us to compute the resulting spacetimes out to infinite radius u sing a relaxation algorithm on a compactified grid. We discuss the structure of the weakly and strongly scalarized branches of neutron-star models thus obtained and their dependence on the linear and quadratic coupling parameters $alpha_0$, $beta_0$ between the scalar and tensor sectors of the theory, as well as the scalar mass $mu$. For highly negative values of $beta_0$, we encounter configurations resembling a gravitational atom, consisting of a highly compact baryon star surrounded by a scalar cloud. A stability analysis based on binding-energ calculations suggests that these configurations are unstable and we expect them to migrate to models with radially decreasing baryon density {it and} scalar field strength.
In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, na-mely, $f(R,T)$ gravity, for which $R$ and $T$ stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering th e functional form $f(R,T)=R+2lambda T$, with $lambda$ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter $lambda$ are derived. More massive and larger white dwarfs are found for negative values of $lambda$ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of $f(R,T)$ theory for massive white dwarfs is the increase of the radius in comparison with GR and also $f(R)$ results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for $lambda$, namely, $lambda >- 3times 10^{-4}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا