ترغب بنشر مسار تعليمي؟ اضغط هنا

Hermite-Gaussian Mode Detection via Convolution Neural Networks

71   0   0.0 ( 0 )
 نشر من قبل Lucas Hofer
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Hermite-Gaussian (HG) laser modes are a complete set of solutions to the free-space paraxial wave equation in Cartesian coordinates and represent a close approximation to physically-realizable laser cavity modes. Additionally, HG modes can be mode-multiplexed to significantly increase the information capacity of optical communication systems due to their orthogonality. Since, both cavity tuning and optical communication applications benefit from a machine vision determination of HG modes, convolution neural networks were implemented to detect the lowest twenty-one unique HG modes with an accuracy greater than 99%. As the effectiveness of a CNN is dependent on the diversity of its training data, extensive simulated and experimental datasets were created for training, validation and testing.



قيم البحث

اقرأ أيضاً

The Hermite-Gaussian (HG) modes, sometimes also referred to as transverse electromagnetic modes in free space, form a complete and orthonormal basis that have been extensively used to describe optical fields. In addition, these modes have been shown to be helpful to enhance information capacity of optical communications as well as to achieve super-resolution imaging in microscopy. Here we propose and present the realization of an efficient, robust mode sorter that can sort a large number of HG modes based on the relation between HG modes and Laguerre-Gaussian (LG) modes. We experimentally demonstrate the sorting of 16 HG modes, and our method can be readily extended to a higher-dimensional state space in a straightforward manner. We expect that our demonstration will have direct applications in a variety of fields including fiber optics, classical and quantum communications, as well as super-resolution imaging.
Parcellation of whole-brain tractography streamlines is an important step for tract-based analysis of brain white matter microstructure. Existing fiber parcellation approaches rely on accurate registration between an atlas and the tractograms of an i ndividual, however, due to large individual differences, accurate registration is hard to guarantee in practice. To resolve this issue, we propose a novel deep learning method, called DeepBundle, for registration-free fiber parcellation. Our method utilizes graph convolution neural networks (GCNNs) to predict the parcellation label of each fiber tract. GCNNs are capable of extracting the geometric features of each fiber tract and harnessing the resulting features for accurate fiber parcellation and ultimately avoiding the use of atlases and any registration method. We evaluate DeepBundle using data from the Human Connectome Project. Experimental results demonstrate the advantages of DeepBundle and suggest that the geometric features extracted from each fiber tract can be used to effectively parcellate the fiber tracts.
We propose a novel approach for performing convolution of signals on curved surfaces and show its utility in a variety of geometric deep learning applications. Key to our construction is the notion of directional functions defined on the surface, whi ch extend the classic real-valued signals and which can be naturally convolved with with real-valued template functions. As a result, rather than trying to fix a canonical orientation or only keeping the maximal response across all alignments of a 2D template at every point of the surface, as done in previous works, we show how information across all rotations can be kept across different layers of the neural network. Our construction, which we call multi-directional geodesic convolution, or directional convolution for short, allows, in particular, to propagate and relate directional information across layers and thus different regions on the shape. We first define directional convolution in the continuous setting, prove its key properties and then show how it can be implemented in practice, for shapes represented as triangle meshes. We evaluate directional convolution in a wide variety of learning scenarios ranging from classification of signals on surfaces, to shape segmentation and shape matching, where we show a significant improvement over several baselines.
415 - Qi She , Anqi Wu 2019
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
Deep learning has dramatically improved the performance in many application areas such as image classification, object detection, speech recognition, drug discovery and etc since 2012. Where deep learning algorithms promise to discover the intricate hidden information inside the data by leveraging the large dataset, advanced model and computing power. Although deep learning techniques show medical expert level performance in a lot of medical applications, but some of the applications are still not explored or under explored due to the variation of the species. In this work, we studied the bright field based cell level Cryptosporidium and Giardia detection in the drink water with deep learning. Our experimental demonstrates that the new developed deep learning-based algorithm surpassed the handcrafted SVM based algorithm with above 97 percentage in accuracy and 700+fps in speed on embedded Jetson TX2 platform. Our research will lead to real-time and high accuracy label-free cell level Cryptosporidium and Giardia detection system in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا