ﻻ يوجد ملخص باللغة العربية
As 3D scanning solutions become increasingly popular, several deep learning setups have been developed geared towards that task of scan completion, i.e., plausibly filling in regions there were missed in the raw scans. These methods, however, largely rely on supervision in the form of paired training data, i.e., partial scans with corresponding desired completed scans. While these methods have been successfully demonstrated on synthetic data, the approaches cannot be directly used on real scans in absence of suitable paired training data. We develop a first approach that works directly on input point clouds, does not require paired training data, and hence can directly be applied to real scans for scan completion. We evaluate the approach qualitatively on several real-world datasets (ScanNet, Matterport, KITTI), quantitatively on 3D-EPN shape completion benchmark dataset, and demonstrate realistic completions under varying levels of incompleteness.
In this paper, we present a novel unpaired point cloud completion network, named Cycle4Completion, to infer the complete geometries from a partial 3D object. Previous unpaired completion methods merely focus on the learning of geometric correspondenc
We describe a simple pre-training approach for point clouds. It works in three steps: 1. Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for
In this paper, we proposed a novel Style-based Point Generator with Adversarial Rendering (SpareNet) for point cloud completion. Firstly, we present the channel-attentive EdgeConv to fully exploit the local structures as well as the global shape in p
Scanning real-life scenes with modern registration devices typically give incomplete point cloud representations, mostly due to the limitations of the scanning process and 3D occlusions. Therefore, completing such partial representations remains a fu
Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However,