We describe a scheme of deterministic single-photon subtraction in a solid-state system consisting of a charged quantum dot coupled to a bimodal photonic-crystal cavity with a moderate magnetic field applied in a Voigt configuration. We numerically simulate injection of optical pulses into one of the modes of the bimodal cavity and show that the system deterministically transfers one photon into the second cavity mode for input pulses in the form of both Fock states and coherent states.
The ability to generate mode-engineered single photons to interface with disparate quantum systems is of importance for building a quantum network. Here we report on the generation of a pulsed, heralded single photon source with a sub-GHz spectral ba
ndwidth that couples to indium arsenide quantum dots centered at 942 nm. The source is built with a type-II PPKTP down-conversion crystal embedded in a semi-confocal optical cavity and pumped with a 76 MHz repetition rate pulsed laser to emit collinear, polarization-correlated photon pairs resonant with a single quantum dot. In order to demonstrate direct coupling, we use the mode-engineered cavity-SPDC single-photon source to resonantly excite an isolated single quantum dot.
We report on the observation of bright emission of single photons under pulsed resonance fluorescence conditions from a single quantum dot (QD) in a micropillar cavity. The brightness of the QD fluorescence is greatly enhanced via the coupling to the
fundamental mode of a micropillar, allowing us to determine a single photon extraction efficiency of $(20.7pm0.8)~%$ per linear polarization basis. This yields an overall extraction efficiency of $(41.4pm1.5)~%$ in our device. We observe the first Rabi-oscillation in a weakly coupled quantum dot-micropillar system under coherent pulsed optical excitation, which enables us to deterministically populate the excited QD state. In this configuration, we probe the single photon statistics of the device yielding $g^{(2)}(0)=0.072pm0.011$ at a QD-cavity detuning of $75~mu$eV.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant
um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We observe the unconventional photon blockade effect in quantum dot cavity QED, which, in contrast to conventional photon blockade, operates in the weak coupling regime. A single quantum dot transition is simultaneously coupled to two orthogonally po
larized optical cavity modes, and by careful tuning of the input and output state of polarization, the unconventional photon blockade effect is observed. We find a minimum second-order correlation $g^{(2)}(0)approx0.37$ which corresponds to $g^{(2)}(0)approx0.005$ when corrected for detector jitter, and observe the expected polarization dependency and photon bunching and anti-bunching very close-by in parameter space, which indicates the abrupt change from phase to amplitude squeezing.
We investigate the feasibility of implementing an elementary building block for quantum information processing. The combination of a deterministic single photon source based on vacuum stimulated adiabatic rapid passage, and a quantum memory based on
electromagnetically induced transparency in atomic vapour is outlined. Both systems are able to produce and process temporally shaped wavepackets which provides a way to maintain the indistinguishability of retrieved and original photons. We also propose an efficient and robust `repeat-until-success quantum computation scheme based on this hybrid architecture.