ﻻ يوجد ملخص باللغة العربية
Atomic Fermi gases provide an ideal platform for studying the pairing and superfluid physics, using a Feshbach resonance between closed channel molecular states and open channel scattering states. Of particular interest is the strongly interacting regime. We show that the closed-channel fraction $Z$ provides an effective probe for the important many-body interacting effects, especially through its density dependence, which is absent from two-body theoretical predictions. Here we measure $Z$ as a function of interaction strength and the Fermi temperature $T_F$ in a trapped $^6$Li superfluid throughout the entire BCS--BEC crossover. Away from the deep BEC regime, the fraction $Z$ is sensitive to $T_F$. In particular, our data show $Z propto T_F^{alpha}$ with $alpha=1/2$ at unitarity, in quantitative agreement with calculations of a two-channel pairing fluctuation theory, and $alpha$ increases rapidly into the BCS regime, reflecting many-body interaction effects as predicted.
We study the Higgs amplitude mode in the s-wave superfluid state on the honeycomb lattice inspired by recent cold atom experiments. We consider the attractive Hubbard model and focus on the vicinity of a quantum phase transition between semi-metal an
We present real-space dynamical mean-field theory calculations for attractively interacting fermions in three-dimensional lattices with elongated traps. The critical polarization is found to be 0.8, regardless of the trap elongation. Below the critic
We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single particle excitations. Calculating the density response
Measurement techniques based upon the Hall effect are invaluable tools in condensed matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the fiel
We report the first all-optical production of a superfluid Bose-Fermi mixture with two spin states of $^6$Li (fermion) and one spin state of $^7$Li (boson) under the resonant magnetic field of the s-wave Feshbach resonance of the fermions. Fermions a