ﻻ يوجد ملخص باللغة العربية
We investigate collective nonlinear dynamics in a blue-detuned optomechanical cavity that is mechanically coupled to an undriven mechanical resonator. By controlling the strength of the driving field, we engineer a mechanical gain that balances the losses of the undriven resonator. This gain-loss balance corresponds to the threshold where both coupled mechanical resonators enter simultaneously into self-sustained limit cycle oscillations regime. Rich sets of collective dynamics such as in-phase and out-of-phase synchronizations therefore emerge, depending on the mechanical coupling rate, the optically induced mechanical gain and spring effect, and the frequency mismatch between the resonators. Moreover, we introduce the quadratic coupling that induces enhancement of the in-phase synchronization. This work shows how phonon transport can remotely induce synchronization in coupled mechanical resonator array and opens up new avenues for metrology, communication, phonon-processing, and novel memories concepts.
Rare-earth ion doped crystals for hybrid quantum technologies is an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator which is fabricated out of a rare-eart
We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other e.g. through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stoc
Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissi
Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution and highly isolated from the environment. We show that properly tuned optical parameters allow for the study of the non-equilibrium dynamics of co
We present study of the dynamics of two ring waveguide structure with space dependent coupling, linear gain and nonlinear absorption - the system that can be implemented in polariton condensates, optical waveguides, and nanocavities. We show that by