ﻻ يوجد ملخص باللغة العربية
We present a proof of concept of a new galaxy group finder method, Markov graph Clustering (MCL; Van Dongen 2000) that naturally handles probabilistic linking criteria. We introduce a new figure of merit, the variation of information statistic (VI; Meila 2003), used to optimise the free parameter(s) of the MCL algorithm. We explain that the common Friends-of-Friends (FoF) method is a subset of MCL. We test MCL in real space on a realistic mock galaxy catalogue constructed from a N-body simulation using the GALFORM model. With a fixed linking length FoF produces the best group catalogues as quantified by the VI statistic. By making the linking length sensitive to the local galaxy density, the quality of the FoF and MCL group catalogues improve significantly, with MCL being preferred over FoF due to a smaller VI value. The MCL group catalogue recovers accurately the underlying halo multiplicity function at all multiplicities. MCL provides better and more consistent group purity and halo completeness values at all multiplicities than FoF. As MCL allows for probabilistic pairwise connections, it is a promising algorithm to find galaxy groups in photometric surveys.
We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ
Fossil groups (FGs) have been discovered twenty-five years ago, and are now defined as galaxy groups with an X-ray luminosity higher than $10^{42} h_{50}^{-2}$ erg s$^{-1}$ and a brightest group galaxy brighter than the other group members by at leas
The integral expression for gravitational potential of a homogeneous circular torus composed of infinitely thin rings is obtained. Approximate expressions for torus potential in the outer and inner regions are found. In the outer region a torus poten
In an effort to better understand the formation of galaxy groups, we examine the kinematics of a large sample of spectroscopically confirmed X-ray galaxy groups in the Cosmic Evolution Survey (COSMOS) with a high sampling of galaxy group members up t