ﻻ يوجد ملخص باللغة العربية
The Gibbs entropy of a macroscopic classical system is a function of a probability distribution over phase space, i.e., of an ensemble. In contrast, the Boltzmann entropy is a function on phase space, and is thus defined for an individual system. Our aim is to discuss and compare these two notions of entropy, along with the associated ensemblist and individualist views of thermal equilibrium. Using the Gibbsian ensembles for the computation of the Gibbs entropy, the two notions yield the same (leading order) values for the entropy of a macroscopic system in thermal equilibrium. The two approaches do not, however, necessarily agree for non-equilibrium systems. For those, we argue that the Boltzmann entropy is the one that corresponds to thermodynamic entropy, in particular in connection with the second law of thermodynamics. Moreover, we describe the quantum analog of the Boltzmann entropy, and we argue that the individualist (Boltzmannian) concept of equilibrium is supported by the recent works on thermalization of closed quantum systems.
In a recent paper, Dunkel and Hilbert [Nature Physics 10, 67-72 (2014)] use an entropy definition due to Gibbs to provide a consistent thermostatistics which forbids negative absolute temperatures. Here we argue that the Gibbs entropy fails to satisf
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a
We generalize the convex duality symmetry in Gibbs statistical ensemble formulation, between Massieus free entropy $Phi_{V,N} (beta)$ and the Gibbs entropy $varphi_{V,N}(u)$ as a function of mean internal energy $u$. The duality tells us that Gibbs t
This paper introduces the basic concepts of information theory. Based on these concepts, we regard the states in the state space and the types of ideal gases as the symbols in a symbol set to calculate the mixing entropy of ideal gas involved in Gibb
We develop the framework of classical Observational entropy, which is a mathematically rigorous and precise framework for non-equilibrium thermodynamics, explicitly defined in terms of a set of observables. Observational entropy can be seen as a gene