ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre (2019, Nature, 567, 34)

117   0   0.0 ( 0 )
 نشر من قبل Shinya Nakashima
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent article An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre (2019, Nature, 567, 34) reported the detection of chimney-like X-ray-emitting features above and below the Galactic Center from XMM-Newton observations. We note here that these features were already reported by our Suzaku papers: Nakashima et al. (2013, ApJ, 773, 20, arXiv:1310.4236) for the southern feature and Nakashima et al. (2019, ApJ, in press, arXiv:1903.02571) for the northern feature. In particular, Nakashima et al. (2013) show that the ionization state of the southern feature is not in collisional ionization equilibrium and is most likely in a recombining or over-ionized state, which suggests its origin in the Galactic Center about 0.1 Myr ago.



قيم البحث

اقرأ أيضاً

In response to the comment posted by Nakashima et al. (arXiv:1903.1176), regarding prior claims for the features that we referred to as the Galactic Center Chimneys (2019, Nature, 567, 347), we point out the following: 1) The Nakashima et al. 2019 paper appeared in the arXiv on March 8th (1903.02571), after our paper was in the final stage of printing (accepted on January 30th). It is however interesting to see that the morphology of the brightest portions of the two results are in broad agreement (compare their Fig. 1 to our Extended Data Figs. 1 and 2). 2) Nakashima et al. 2013 ApJ 773, 20 claim the discovery of a blob of recombining plasma ~1deg south of Sgr A*, implying peculiar abundances. Again, their image (Fig. 1) agrees with the brightest portions of our images, although it does not show any direct connection between the plasma blob and the central parsec (e.g., such as the quasi-continuous chimney that we reported), nor evidence for an outflow from the center. We apologize for overlooking an appropriate citation to this contribution by Nakashima et al. 3) We fitted the XMM-Newton and Chandra data at the same position of the claimed recombining plasma and we did not find any clear-cut evidence for the presence of either an over-ionised plasma or peculiar abundances. Future X-ray calorimetric observations will presumably clarify this disagreement. 4) The continuity of the Chimney features, their quasi-symmetrical placement relative to Sgr A*, and their relatively sharp and well-defined edges are the essential features of our data that have led us to propose that the Chimneys are a unified columnar structure that represents a channel for the outflow of energy from the central region, possibly contributing to the stocking of the relativistic particle population manifested in the Fermi Bubbles.
Evidence has increasingly mounted in recent decades that outflows of matter and energy from the central parsecs of our Galaxy have shaped the observed structure of the Milky Way on a variety of larger scales. On scales of ~15 pc, the Galactic centre has bipolar lobes that can be seen in both X-rays and radio, indicating broadly collimated outflows from the centre, directed perpendicular to the Galactic plane. On far larger scales approaching the size of the Galaxy itself, gamma-ray observations have identified the so-called Fermi Bubble features, implying that our Galactic centre has, or has recently had, a period of active energy release leading to a production of relativistic particles that now populate huge cavities on both sides of the Galactic plane. The X-ray maps from the ROSAT all-sky survey show that the edges of these cavities close to the Galactic plane are bright in X-rays. At intermediate scales (~150 pc), radio astronomers have found the Galactic Centre Lobe, an apparent bubble of emission seen only at positive Galactic latitudes, but again indicative of energy injection from near the Galactic centre. Here we report the discovery of prominent X-ray structures on these intermediate (hundred-parsec) scales above and below the plane, which appear to connect the Galactic centre region to the Fermi bubbles. We propose that these newly-discovered structures, which we term the Galactic Centre Chimneys, constitute a channel through which energy and mass, injected by a quasi-continuous train of episodic events at the Galactic centre, are transported from the central parsecs to the base of the Fermi bubbles.
We present the rest-frame 200--320 mm spectrum of the z=3.91 quasar apm, obtained with Z-Spec at the Caltech Submillimeter Observatory. In addition to the jeight to jthirteen CO rotational transitions which dominate the CO cooling, we find six transi tions of water originating at energy levels ranging up to 643 K. Most are first detections at high redshift, and we have confirmed one transition with CARMA. The CO cooling is well-described by our XDR model, assuming L$_{rm 1-100,keV}sim1times10^{46}rm,erg,s^{-1}$, and that the gas is distributed over a 550-pc sizescale, per the now-favored $mu$=4 lensing model. The total observed cooling in water corresponds to 6.5$times10^{9}$ ls, comparable to that of CO. We compare the water spectrum with that of Mrk 231, finding that the intensity ratios among the high-lying lines are similar, but with a total luminosity scaled up by a factor of $sim$50. Using this scaling, we estimate an average water abundance relative to hh of 1.4$times10^{-7}$, a good match to the prediction of the chemical network in the XDR model. As with Mrk 231, the high-lying water transitions are excited radiatively via absorption in the rest-frame far-infrared, and we show that the powerful dust continuum in apm is more than sufficient to pump this massive reservoir of warm water vapor.
We present results of a multi-wavelength program to study the faint discrete X-ray source population discovered by Chandra in the Galactic Centre (GC). From IR imaging obtained with the VLT we identify candidate K-band counterparts to 75% of the X-ra y sources in our sample. By combining follow-up VLT K-band spectroscopy of a subset of these candidate counterparts with the magnitude limits of our photometric survey, we suggest that only a small percentage of the sources are HMXBs, while the majority are likely to be canonical LMXBs and CVs at the distance of the GC. In addition, we present our discovery of highly structured small-scale (5-15) extinction towards the Galactic Centre. This is the finest-scale extinction study of the Galactic Centre to date. Finally, from these VLT observations we are able to place constraints on the stellar counterpart to the ``bursting pulsar GRO J1744-28.
We discuss the formation of dark compact objects in a dark matter environment in view of the possible mass dependence of pulsars on the distribution of dark matter in the Galaxy. Our results indicate that the pulsar masses should decrease going towar ds the center of the Milky Way due to dark matter capture, thus becoming a probe for the existence and nature of dark matter. We thus propose that the evolution of the pulsar mass in a dark matter rich environment can be used to put constraints, when combined with future experiments, on the characteristics of our Galaxy halo dark matter profile, on the dark matter particle mass and on the dark matter self-interaction strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا