ﻻ يوجد ملخص باللغة العربية
Astrometry, the measurement of positions and motions of the stars, is one of the oldest disciplines in Astronomy, extending back at least as far as Hipparchus discovery of the precession of Earths axes in 190 BCE by comparing his catalog with those of his predecessors. Astrometry is fundamental to Astronomy, and critical to many aspects of Astrophysics and Geodesy. In order to understand our planets and solar systems context within their surroundings, we must be able to to define, quantify, study, refine, and maintain an inertial frame of reference relative to which all positions and motions can be unambiguously and self-consistently described. It is only by using this inertial reference frame that we are able to disentangle our observations of the motions of celestial objects from our own complex path around our star, and its path through the galaxy, and the local group. Every aspect of each area outlined in the call for scientific frontiers in astronomy in the era of the 2020-2030 timeframe will depend on the quality of the inertial reference frame. In this white paper, we propose support for development of radio Very Long Baseline Interferometry (VLBI) capabilities, including the Next Generation Very Large Array (ngVLA), a radio astronomy observatory that will not only support development of a next generation reference frame of unprecedented accuracy, but that will also serve as a highly capable astronomical instrument in its own right. Much like its predecessors, the Very Long Baseline Array (VLBA) and other VLBI telescopes, the proposed ngVLA will provide the foundation for the next three decades for the fundamental reference frame, benefitting astronomy, astrophysics, and geodesy alike.
The goal of this presentation is to report the latest progress in creation of the next generation of VLBI-based International Celestial Reference Frame, ICRF3. Two main directions of ICRF3 development are improvement of the S/X-band frame and extensi
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is th
We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame. Understanding this relationship is important for improving quasar selection and an
The third iteration of the International Celestial Reference Frame (ICRF3) is made up of 4536 quasars observed at S/X bands using Very Long baseline Interferometry (VLBI). These sources are high redshift quasars, typically between $1<z<2$, that are b
We have measured the sub-milli-arcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high frequency celestial reference frame (CRF). Ten sessions of observations with the Very