Powers Vs. Powers


الملخص بالإنكليزية

Let $ A subset B$ be rings. An ideal $ J subset B$ is called power stable in $A$ if $ J^n cap A = (Jcap A)^n$ for all $ ngeq 1$. Further, $J$ is called ultimately power stable in $A$ if $ J^n cap A = (Jcap A)^n$ for all $n$ large i.e., $ n gg 0$. In this note, our focus is to study these concepts for pair of rings $ R subset R[X]$ where $R$ is an integral domain. Some of the results we prove are: A maximal ideal $textbf{m}$ in $R[X]$ is power stable in $R$ if and only if $ wp^t $ is $ wp-$primary for all $ t geq 1$ for the prime ideal $wp = textbf{m}cap R$. We use this to prove that for a Hilbert domain $R$, any radical ideal in $R[X]$ which is a finite intersection of G-ideals is power stable in $R$. Further, we prove that if $R$ is a Noetherian integral domain of dimension 1 then any radical ideal in $R[X] $ is power stable in $R$, and if every ideal in $R[X]$ is power stable in $R$ then $R$ is a field. We also show that if $ A subset B$ are Noetherian rings, and $ I $ is an ideal in $B$ which is ultimately power stable in $A$, then if $ I cap A = J$ is a radical ideal generated by a regular $A$-sequence, it is power stable. Finally, we give a relationship in power stability and ultimate power stability using the concept of reduction of an ideal (Theorem 3.22).

تحميل البحث