ترغب بنشر مسار تعليمي؟ اضغط هنا

The EBLM Project V. Physical properties of ten fully convective, very-low-mass stars

76   0   0.0 ( 0 )
 نشر من قبل Alexander von Boetticher
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the physical properties of stars at the lower end of the main sequence are scarce. In this context we report masses, radii and surface gravities of ten very-low-mass stars in eclipsing binary systems, with orbital periods of the order of several days. The objects probe the stellar mass-radius relation in the fully convective regime, $M_star lesssim 0.35$ M$_odot$, down to the hydrogen burning mass-limit, $M_{mathrm{HB}} sim 0.07$ M$_odot$. The stars were detected by the WASP survey for transiting extra-solar planets, as low-mass, eclipsing companions orbiting more massive, F- and G-type host stars. We use eclipse observations of the host stars (TRAPPIST, Leonhard Euler, SPECULOOS telescopes), and radial velocities of the host stars (CORALIE spectrograph), to determine physical properties of the low-mass companions. Companion surface gravities are derived from the eclipse and orbital parameters of each system. Spectroscopic measurements of the host star effective temperature and metallicity are used to infer the host star mass and age from stellar evolution models. Masses and radii of the low-mass companions are then derived from the eclipse and orbital parameters of each system. The objects are compared to stellar evolution models for low-mass stars, to test for an effect of the stellar metallicity and orbital period on the radius of low-mass stars in close binary systems. Measurements are in good agreement with stellar models; an inflation of the radii of low-mass stars with respect to model predictions is limited to 1.6 $pm$ 1.2% in the fully convective regime. The sample of ten objects indicates a scaling of the radius of low-mass stars with the host star metallicity. No correlation between stellar radii and orbital periods of the binary systems is determined. A combined analysis with comparable objects from the literature is consistent with this result.



قيم البحث

اقرأ أيضاً

In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have been identified from WASP light curves and follow-up spectroscopy in the course of the transiting planet search. We present the first binary of the EBLM sample to be fully analysed, and thus, define here the methodology. The primary component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/- 0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are fully consistent with stellar evolutionary models. However, from the near-infrared secondary eclipse light curve, the M dwarf is found to have an effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted by theoretical models. We discuss different scenarios to explain this temperature discrepancy. The case of J0113+31 for which we can measure mass, radius, temperature and metallicity, highlights the importance of deriving mass, radius and temperature as a function of metallicity for M dwarfs to better understand the lowest mass stars. The EBLM Project will define the relationship between mass, radius, temperature and metallicity for M dwarfs providing important empirical constraints at the bottom of the main sequence.
The Gaia M-dwarf gap is a significant under-density of stars observed near $M_G = 10.2$ in a color-magnitude diagram for stars within 200 pc of the Sun. It has been proposed that the gap is the manifestation of structural instabilities within stellar interiors due to non-equilibrium $^{3}$He fusion prior to some stars becoming fully convective. To test this hypothesis, we use Dartmouth stellar evolution models, MARCS model atmospheres, and simple stellar population synthesis to create synthetic $M_G$-($G_{rm BP} - G_{rm RP})$ color-magnitude diagrams. We confirm that the proposed $^{3}$He instability is responsible for the appearance of the M-dwarf gap. Our synthetic gap shows qualitatively similar features to the observed gap including: its vertical extent in $M_G$, its slope in the color-magnitude diagram, and its relative prominence at bluer colors as compared to redder colors. Furthermore, corresponding over-densities of stars above the gap are reproduced by the models. While qualitatively similar, the synthetic gap is approximately 0.2 magnitudes bluer and, accounting for this color offset, 0.16 magnitudes brighter than the observed gap. Our results reveal that the Gaia M dwarf gap is sensitive to conditions within cores of M dwarf stars, making the gap a powerful tool for testing the physics of M dwarf stars and potentially using M dwarfs to understand the local star formation history.
474 - Santi Cassisi 2011
We briefly review the main physical and structural properties of Very Low-Mass stars. The most important improvements in the physical inputs required for the stellar models computations are also discussed. We show some comparisons with observational measurements concerning both the Color-Magnitude diagrams, mass-luminosity relations and mass-radius one, in order to disclose the level of agreement between the present theoretical framework and observations.
Tidal interactions in close star-planet or binary star systems may excite inertial waves (their restoring force is the Coriolis force) in the convective region of the stars. The dissipation of these waves plays a prominent role in the long-term orbit al and rotational evolution of the bodies involved. If the primary star rotates as a solid body, inertial waves have a Doppler-shifted frequency restricted to the range $[-2Omega, 2Omega]$ ($Omega$ being the angular velocity of the star), and they can propagate in the entire convective region. However, turbulent convection can sustain differential rotation with an equatorial acceleration (as in the Sun) or deceleration that modifies the frequency range and propagation domain of inertial waves and allows corotation resonances for non-axisymmetric oscillations. In this work, we perform numerical simulations of tidally excited inertial waves in a differentially rotating convective envelope with a conical (or latitudinal) rotation profile. The tidal forcing that we adopt contains spherical harmonics that correspond to the case of a circular and coplanar orbit. We study the viscous dissipation of the waves as a function of tidal frequency for various stellar masses and differential rotation parameters, as well as its dependence on the turbulent viscosity coefficient. We compare our results with previous studies assuming solid-body rotation and point out the potential key role of corotation resonances in the dynamical evolution of close-in star-planet or binary systems.
Some M-dwarfs around F-/G-type stars have been measured to be hotter and larger than predicted by stellar evolution models. Inconsistencies between observations and models need addressing with more mass, radius and luminosity measurements of low-mass stars to test and refine evolutionary models. Our aim is to measure the masses, radii and ages of the stars in five low-mass eclipsing binary systems discovered by the WASP survey. We use WASP photometry to establish eclipse-time ephemerides and to obtain initial estimates for the transit depth and width. Radial velocity measurements were simultaneously fitted with follow-up photometry to find the best-fitting orbital solution. This solution was combined with measurements of atmospheric parameters to interpolate evolutionary models and estimate the mass of the primary star, and the mass and radius of the M-dwarf companion. We assess how the best fitting orbital solution changes if an alternative limb-darkening law is used and quantify the systematic effects of unresolved companions. We also gauge how the best-fitting evolutionary model changes if different values are used for the mixing length parameter and helium enhancement. We report the mass and radius of five M-dwarfs and find little evidence of inflation with respect to evolutionary models. The primary stars in two systems are near the ``blue hook stage of their post sequence evolution, resulting in two possible solutions for mass and age. We find that choices in helium enhancement and mixing-length parameter can introduce an additional 3-5,% uncertainty in measured M-dwarf mass. Unresolved companions can introduce an additional 3-8% uncertainty in the radius of an M-dwarf, while the choice of limb-darkening law can introduce up to an additional 2% uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا