Cyclically covering subspaces in $mathbb{F}_2^n$


الملخص بالإنكليزية

A subspace of $mathbb{F}_2^n$ is called cyclically covering if every vector in $mathbb{F}_2^n$ has a cyclic shift which is inside the subspace. Let $h_2(n)$ denote the largest possible codimension of a cyclically covering subspace of $mathbb{F}_2^n$. We show that $h_2(p)= 2$ for every prime $p$ such that 2 is a primitive root modulo $p$, which, assuming Artins conjecture, answers a question of Peter Cameron from 1991. We also prove various bounds on $h_2(ab)$ depending on $h_2(a)$ and $h_2(b)$ and extend some of our results to a more general set-up proposed by Cameron, Ellis and Raynaud.

تحميل البحث