ﻻ يوجد ملخص باللغة العربية
GHz radio astronomy has played a fundamental role in the recent dazzling discovery of GW170817, a neutron star (NS)-NS merger observed in both gravitational waves (GWs) and light at all wavelengths. Here we show how the expected progress in sensitivity of ground-based GW detectors over the next decade calls for U.S.-based GHz radio arrays to be improved beyond current levels. We discuss specifically how several new scientific opportunities would emerge in multi-messenger time-domain astrophysics if a next generation GHz radio facility with sensitivity and resolution $10times$ better than the current Jansky Very Large Array (VLA) were to work in tandem with ground-based GW detectors. These opportunities include probing the properties, structure, and size of relativistic jets and wide-angle ejecta from NS-NS mergers, as well as unraveling the physics of their progenitors via host galaxy studies.
Coalescing, massive black-hole (MBH) binaries are the most powerful sources of gravitational waves (GWs) in the Universe, which makes MBH science a prime focus for ongoing and upcoming GW observatories. The Laser Interferometer Space Antenna (LISA) -
Ultra-compact binaries (UCBs) are systems containing compact or degenerate stars with orbital periods less than one hour. Tens of millions of UCBs are predicted to exist within theGalaxy emitting gravitational waves (GWs) at mHz frequencies. Combinin
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general
This paper outlines the importance of understanding jets from compact binaries for the problem of understanding the broader phenomenology of jet production. Because X-ray binaries are nearby and bright, have well-measured system parameters, and vary
Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of