ﻻ يوجد ملخص باللغة العربية
The rational design of hydrogen evolution reaction (HER) electrocatalysts which are competitive with platinum is an outstanding challenge to make power-to-gas technologies economically viable. Here, we introduce the delafossites PdCrO$_2$, PdCoO$_2$ and PtCoO$_2$ as a new family of electrocatalysts for the HER in acidic media. We show that in PdCoO$_2$ the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a strained (by +2.3%) Pd rich capping layer under reductive conditions. The surface modification continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density j$_0$ from 2 to 5 mA/cm$^2_{geo}$ and by reducing the Tafel slope down to 38 mV/decade, leading to overpotentials $eta_{10}$ < 15 mV for 10 mA/cm$^2_{geo}$, superior to bulk platinum. The greatly improved activity is attributed to the in-situ stabilization of a $beta$-palladium hydride phase with drastically enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando induced electrodissolution can be used as a top-down design concept for rational surface and property engineering through the strain-stabilized formation of catalytically active phases.
Methanol occupies a central role in chemical synthesis and is considered an ideal candidate for cleaner fuel storage and transportation. It can be catalyzed from water and volatile organic compounds such as carbon dioxide, thereby offering an attract
We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states
Large scale production of hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at
The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TM
Polymer composite electrolytes of Nafion and phosphotungstic acid (PWA) are fabricated and analyzed using electrochemical strain microscopy (ESM) and conductive atomic force microscopy (C-AFM) to visualize hydrophilic ion channels near the surface, w