ﻻ يوجد ملخص باللغة العربية
We present chemical abundances for the elements carbon, sodium, and fluorine in 15 red giants of the globular cluster M 4, as well as six red giants of the globular cluster $omega$ Centauri. The chemical abundances were calculated in LTE via spectral synthesis. The spectra analyzed are high-resolution spectra obtained in the near-infrared region around $lambda$2.3$mu$m with the Phoenix spectrograph on the 8.1m Gemini South Telescope, the IGRINS spectrograph on the McDonald Observatory 2.7m Telescope, and the CRIRES spectrograph on the ESO 8.2m Very Large Telescope. The results indicate a significant reduction in the fluorine abundances when compared to previous values from the literature for M 4 and $omega$ Centauri, due to a downward revision in the excitation potentials of the HF(1-0) R9 line used in the analysis. The fluorine abundances obtained for the M 4 red giants are found to be anti-correlated with those of Na, following the typical pattern of abundance variations seen in globular clusters between distinct stellar populations. In M 4, as the Na abundance increases by $sim$+0.4 dex, the F abundance decreases by $sim$-0.2 dex. A comparison with abundance predictions from two sets of stellar evolution models finds that the models predict somewhat less F depletion ($sim$-0.1 dex) for the same increase of +0.4 dex in Na.
The chemical evolution of fluorine is investigated in a sample of Milky Way red giantstars that span a significant range in metallicity from [Fe/H] $sim$ -1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-res
Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investig
NGC 4833 is a metal-poor Galactic globular cluster (GC) whose multiple stellar populations present an extreme chemical composition. The Na-O anti-correlation is quite extended, which is in agreement with the long tail on the blue horizontal branch, a
We observed a sample of 90 red giant branch (RGB) stars in NGC 2808 using FLAMES/GIRAFFE and the high resolution grating with the set up HR21. These stars have previous accurate atmospheric parameters and abundances of light elements. We derived alum
Lithium is created during the Big Bang nucleosynthesis and it is destroyed in stellar interiors at relatively low temperatures. However, it should be preserved in the stellar envelopes of unevolved stars and progressively diluted during mixing proces