First Results from the AMoRE-Pilot neutrinoless double beta decay experiment


الملخص بالإنكليزية

The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $^{48}$Ca-depleted calcium and $^{100}$Mo-enriched molybdenum ($^{48textrm{depl}}$Ca$^{100}$MoO$_4$). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $0 ubetabeta$ search with a 111 kg$cdot$d live exposure of $^{48textrm{depl}}$Ca$^{100}$MoO$_4$ crystals. No evidence for $0 ubetabeta$ decay of $^{100}$Mo is found, and a upper limit is set for the half-life of 0$ ubetabeta$ of $^{100}$Mo of $T^{0 u}_{1/2} > 9.5times10^{22}$ y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range $langle m_{betabeta}ranglele(1.2-2.1)$ eV.

تحميل البحث