ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and accurate reconstruction of HARDI using a 1D encoder-decoder convolutional network

224   0   0.0 ( 0 )
 نشر من قبل Shi Yin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High angular resolution diffusion imaging (HARDI) demands a lager amount of data measurements compared to diffusion tensor imaging, restricting its use in practice. In this work, we explore a learning-based approach to reconstruct HARDI from a smaller number of measurements in q-space. The approach aims to directly learn the mapping relationship between the measured and HARDI signals from the collecting HARDI acquisitions of other subjects. Specifically, the mapping is represented as a 1D encoder-decoder convolutional neural network under the guidance of the compressed sensing (CS) theory for HARDI reconstruction. The proposed network architecture mainly consists of two parts: an encoder network produces the sparse coefficients and a decoder network yields a reconstruction result. Experiment results demonstrate we can robustly reconstruct HARDI signals with the accurate results and fast speed.



قيم البحث

اقرأ أيضاً

In this paper, we develop a binary convolutional encoder-decoder network (B-CEDNet) for natural scene text processing (NSTP). It converts a text image to a class-distinguished salience map that reveals the categorical, spatial and morphological infor mation of characters. The existing solutions are either memory consuming or run-time consuming that cannot be applied to real-time applications on resource-constrained devices such as advanced driver assistance systems. The developed network can process multiple regions containing characters by one-off forward operation, and is trained to have binary weights and binary feature maps, which lead to both remarkable inference run-time speedup and memory usage reduction. By training with over 200, 000 synthesis scene text images (size of $32times128$), it can achieve $90%$ and $91%$ pixel-wise accuracy on ICDAR-03 and ICDAR-13 datasets. It only consumes $4.59 ms$ inference run-time realized on GPU with a small network size of 2.14 MB, which is up to $8times$ faster and $96%$ smaller than it full-precision version.
163 - Weiya Fan 2020
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to l earn the fingerprint features of noisy images.the decoder subnet reconstructs the original fingerprint image based on the features to achieve denoising, while using the dilated convolution in the network to increase the receptor field without increasing the complexity and improve the network inference speed. In addition, feature fusion at different levels of the network is achieved through the introduction of residual learning, which further restores the detailed features of the fingerprint and improves the denoising effect. Finally, the experimental results show that the algorithm enables better recovery of edge, line and curve features in fingerprint images, with better visual effects and higher peak signal-to-noise ratio (PSNR) compared to other methods.
The current developments in the field of machine vision have opened new vistas towards deploying multimodal biometric recognition systems in various real-world applications. These systems have the ability to deal with the limitations of unimodal biom etric systems which are vulnerable to spoofing, noise, non-universality and intra-class variations. In addition, the ocular traits among various biometric traits are preferably used in these recognition systems. Such systems possess high distinctiveness, permanence, and performance while, technologies based on other biometric traits (fingerprints, voice etc.) can be easily compromised. This work presents a novel deep learning framework called SIP-SegNet, which performs the joint semantic segmentation of ocular traits (sclera, iris and pupil) in unconstrained scenarios with greater accuracy. The acquired images under these scenarios exhibit purkinje reflexes, specular reflections, eye gaze, off-angle shots, low resolution, and various occlusions particularly by eyelids and eyelashes. To address these issues, SIP-SegNet begins with denoising the pristine image using denoising convolutional neural network (DnCNN), followed by reflection removal and image enhancement based on contrast limited adaptive histogram equalization (CLAHE). Our proposed framework then extracts the periocular information using adaptive thresholding and employs the fuzzy filtering technique to suppress this information. Finally, the semantic segmentation of sclera, iris and pupil is achieved using the densely connected fully convolutional encoder-decoder network. We used five CASIA datasets to evaluate the performance of SIP-SegNet based on various evaluation metrics. The simulation results validate the optimal segmentation of the proposed SIP-SegNet, with the mean f1 scores of 93.35, 95.11 and 96.69 for the sclera, iris and pupil classes respectively.
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interes ts in medical imaging. In this work, we trained a deep residual convolutional neural network to improve PET image quality by using the existing inter-patient information. An innovative feature of the proposed method is that we embed the neural network in the iterative reconstruction framework for image representation, rather than using it as a post-processing tool. We formulate the objective function as a constraint optimization problem and solve it using the alternating direction method of multipliers (ADMM) algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. Quantification results show that our proposed iterative neural network method can outperform the neural network denoising and conventional penalized maximum likelihood methods.
Reconstruction of PET images is an ill-posed inverse problem and often requires iterative algorithms to achieve good image quality for reliable clinical use in practice, at huge computational costs. In this paper, we consider the PET reconstruction a dense prediction problem where the large scale contextual information is essential, and propose a novel architecture of multi-scale fully convolutional neural networks (msfCNN) for fast PET image reconstruction. The proposed msfCNN gains large receptive fields with both memory and computational efficiency, by using a downscaling-upscaling structure and dilated convolutions. Instead of pooling and deconvolution, we propose to use the periodic shuffling operation from sub-pixel convolution and its inverse to scale the size of feature maps without losing resolution. Residual connections were added to improve training. We trained the proposed msfCNN model with simulated data, and applied it to clinical PET data acquired on a Siemens mMR scanner. The results from real oncological and neurodegenerative cases show that the proposed msfCNN-based reconstruction outperforms the iterative approaches in terms of computational time while achieving comparable image quality for quantification. The proposed msfCNN model can be applied to other dense prediction tasks, and fast msfCNN-based PET reconstruction could facilitate the potential use of molecular imaging in interventional/surgical procedures, where cancer surgery can particularly benefit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا