ترغب بنشر مسار تعليمي؟ اضغط هنا

Qatar Exoplanet Survey: Qatar-8b, 9b and 10b --- A Hot Saturn and Two Hot Jupiters

63   0   0.0 ( 0 )
 نشر من قبل Zlatan Tsvetanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present three new extrasolar planets from the Qatar Exoplanet Survey (QES). Qatar-8b is a hot Saturn, with Mpl = 0.37 Mjup and Rpl = 1.3 Rjup, orbiting a solar-like star every Porb = 3.7 days. Qatar-9b is a hot Jupiter with a mass of Mpl = 1.2 Mjup and a radius of Rpl = 1 Rjup, in a Porb = 1.5 days orbit around a low mass, Mstar = 0.7 Msun, mid-K main-sequence star. Finally, Qatar-10b is a hot, Teq ~ 2000 K, sub-Jupiter mass planet, Mpl = 0.7 Mjup, with a radius of Rpl = 1.54 Rjup and an orbital period of Porb = 1.6 days, placing it on the edge of the sub-Jupiter desert.



قيم البحث

اقرأ أيضاً

We report the discovery, by the Next Generation Transit Survey (NGTS), of two hot-Jupiters NGTS-8b and NGTS-9b. These orbit a V = 13.68 K0V star (Teff = 5241 +/- 50 K) with a period of 2.49970 days, and a V = 12.80 F8V star (Teff = 6330 +/- 130 K) in 4.43527 days, respectively. The transits were independently verified by follow-up photometric observations with the SAAO 1.0-m and Euler telescopes, and we report on the planetary parameters using HARPS, FEROS and CORALIE radial velocities. NGTS-8b has a mass, 0.93 +0.04 -0.03 MJ and a radius, 1.09 +/- 0.03 RJ similar to Jupiter, resulting in a density of 0.89 +0.08 -0.07 g cm-3. This is in contrast to NGTS-9b, which has a mass of 2.90 +/- 0.17 MJ and a radius of 1.07 +/- 0.06 RJ , resulting in a much greater density of 2.93 +0.53 -0.49 g cm-3. Statistically, the planetary parameters put both objects in the regime where they would be expected to exhibit larger than predicted radii. However, we find that their radii are in agreement with predictions by theoretical non-inflated models.
We report the discovery of two transiting extrasolar planets by the HATSouth survey. HATS-9b orbits an old (10.8 $pm$ 1.5 Gyr) V=13.3 G dwarf star, with a period P = 1.9153 d. The host star has a mass of 1.03 M$_{odot}$, radius of 1.503 R$_odot$ and effective temperature 5366 $pm$ 70 K. The planetary companion has a mass of 0.837 M$_J$, and radius of 1.065 R$_J$ yielding a mean density of 0.85 g cm$^{-3}$ . HATS-10b orbits a V=13.1 G dwarf star, with a period P = 3.3128 d. The host star has a mass of 1.1 M$_odot$, radius of 1.11 R$_odot$ and effective temperature 5880 $pm$ 120 K. The planetary companion has a mass of 0.53 M$_J$, and radius of 0.97 R$_J$ yielding a mean density of 0.7 g cm$^{-3}$ . Both planets are compact in comparison with planets receiving similar irradiation from their host stars, and lie in the nominal coordinates of Field 7 of K2 but only HATS-9b falls on working silicon. Future characterisation of HATS-9b with the exquisite photometric precision of the Kepler telescope may provide measurements of its reflected light signature.
The Qatar Exoplanet Survey (QES) is discovering hot Jupiters and aims to discover hot Saturns and hot Neptunes that transit in front of relatively bright host stars. QES currently operates a robotic wide-angle camera system to identify promising tran siting exoplanet candidates among which are the confirmed exoplanets Qatar 1b and 2b. This paper describes the first generation QES instrument, observing strategy, data reduction techniques, and follow-up procedures. The QES cameras in New Mexico complement the SuperWASP cameras in the Canary Islands and South Africa, and we have developed tools to enable the QES images and light curves to be archived and analysed using the same methods developed for the SuperWASP datasets. With its larger aperture, finer pixel scale, and comparable field of view, and with plans to deploy similar systems at two further sites, the QES, in collaboration with SuperWASP, should help to speed the discovery of smaller radius planets transiting bright stars in northern skies.
We report the discovery and initial characterisation of Qatar-1b, a hot Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the Alsubai Project exoplanet transit survey. We describe the strategy used to select candidate transit ing planets from photometry generated by the Alsubai Project instrument. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and 0.0234 AU for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.
We present the discovery of two new 10-day period giant planets from the Transiting Exoplanet Survey Satellite ($TESS$) mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have si milar radii ($0.99pm0.01$ $rm R_{J}$ and $1.07pm0.02$ $rm R_{J}$, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses ($1.53pm0.03$ $rm M_{J}$ versus $0.95pm0.07$ $rm M_{J}$, respectively). Both planets orbit metal-rich stars ([Fe/H]= $+0.26pm 0.05$ dex and [Fe/H] = $+0.24 pm 0.05$ dex, for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a $rm M_{star}$ = $1.14pm0.02$ $rm M_{odot}$, $rm R_{star}$ = $1.66pm0.02$ $rm R_{odot}$ G-type star ($T_{rm eff}$ = $5735 pm 72$ K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892, on the other hand, is a F-type dwarf star ($T_{rm eff}$ = $6261 pm 80$ K), which has a mass of $rm M_{star}$ = $1.28pm0.03$ $rm M_{odot}$, and a radius of $rm R_{star}$ = $1.39pm0.02$ $rm R_{odot}$. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا