ﻻ يوجد ملخص باللغة العربية
We present the design for the first narrowband filter NB964 for the Dark Energy Camera (DECam), which is operated on the 4m Blanco Telescope at the Cerro Tololo Inter-American Observatory. The NB964 filter profile is essentially defined by maximizing the power of searching for Lyman alpha emitting galaxies (LAEs) in the epoch of reionization, with the consideration of the night sky background in the near-infrared and the DECam quantum efficiency. The NB964 filter was manufactured by Materion in 2015. It has a central wavelength of 964.2 nm and a full width at half maximum (FWHM) of 9.2 nm. An NB964 survey named LAGER (Lyman Alpha Galaxies in the Epoch of Reionization) has been ongoing since December 2015. Here we report results of lab tests, on-site tests and observations with the NB964 filter. The excellent performances of this filter ensure that the LAGER project is able to detect LAEs at z~7 with a high efficiency.
Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmologica
Narrowband imaging is a highly successful approach for finding large numbers of high redshift Lya emitting galaxies (LAEs) up to z~6.6. However, at z>~7 there are as yet only 3 narrowband selected LAEs with spectroscopic confirmations (two at z~6.9-7
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Sur
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of ExB
We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function -- a mapping from cosmological and astronomical signals to