ترغب بنشر مسار تعليمي؟ اضغط هنا

Resummed photon spectrum from dark matter annihilation for intermediate and narrow energy resolution

113   0   0.0 ( 0 )
 نشر من قبل Martin Beneke
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The annihilation cross section of weakly interacting TeV scale dark matter particles $chi^0$ into photons is affected by large quantum corrections due to electroweak Sudakov logarithms and the Sommerfeld effect. We extend our previous work on the resummation of the semi-inclusive photon energy spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy from the case of narrow photon energy resolution $E^gamma_{rm res}$ of order $m_W^2/m_chi$ to intermediate resolution of order $E^gamma_{rm res} sim m_W$. We also provide details on the previous narrow resolution calculation. The two calculations, performed in different effective field theory set-ups for the wino dark matter model, are then shown to match well, providing an accurate representation up to energy resolutions of about 300 GeV.



قيم البحث

اقرأ أيضاً

132 - M. Beneke , A. Broggio , C. Hasner 2018
The annihilation cross section of TeV scale dark matter particles $chi^0$ with electroweak charges into photons is affected by large quantum corrections due to Sudakov logarithms and the Sommerfeld effect. We calculate the semi-inclusive photon energ y spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy in an all-order summation of the electroweak perturbative expansion adopting the pure wino model. This results in the most precise theoretical prediction of the annihilation rate for $gamma$-ray telescopes with photon energy resolution of parametric order $m_W^2/m_chi$ for photons with TeV energies.
We show that a general semi-annihilation scenario, in which a pair of dark matter (DM) particles annihilate to an anti-DM, and an unstable state that can mix with or decay to standard model states, can lead to particle anti-particle asymmetry in the DM sector. The present DM abundance, including the CP-violation in the DM sector and the resulting present asymmetry are determined entirely by a single semi-annihilation process at next-to-leading order. For large CP-violation in this process, we find that a nearly complete asymmetry can be obtained in the DM sector, with the observed DM density being dominated by the (anti-)DM particle. The presence of additional pair-annihilation processes can modify the ratio of DM and anti-DM number densities further, if the pair-annihilation is active subsequent to the decoupling of the semi-annihilation. For such a scenario, the required CP-violation for generating the same present asymmetry is generically much smaller, as compared to the scenario with only semi-annihilation present. We show that a minimal model with a complex scalar DM with cubic self-interactions can give rise to both semi- and pair-annihilations, with the required CP-violation generated at one-loop level. We also find that the upper bound on the DM mass from S-matrix unitarity in the purely asymmetric semi-annihilation scenario, with maximal CP-violation, is around 15 GeV, which is much stronger than in the WIMP and previously considered asymmetric DM cases, due to the required large non-zero chemical potential for such asymmetric DM.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
We present a scenario of vector dark matter production during inflation containing a complex inflaton field which is charged under a dark gauge field and which has a symmetry breaking potential. As the inflaton field rolls towards the global minimum of the potential the dark photons become massive with a mass which can be larger than the Hubble scale during inflation. The accumulated energy of the quantum fluctuations of the produced dark photons gives the observed relic density of the dark matter for a wide range of parameters. Depending on the parameters, either the transverse modes or the longitudinal mode or their combination can generate the observed dark matter relic energy density.
96 - Martin Beneke 2015
Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, whe re non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Supersymmetric Standard Model. Here the electroweak Yukawa force generated by the exchange of gauge and Higgs bosons can cause large Sommerfeld enhancements of the annihilation cross section in some parameter regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا