ﻻ يوجد ملخص باللغة العربية
We study the Cauchy problem in $n$-dimensional space for the system of Navier-Stokes equations in critical mixed-norm Lebesgue spaces. Local well-posedness and global well-posedness of solutions are established in the class of critical mixed-norm Lebesgue spaces. Being in the mixed-norm Lebesgue spaces, both of the initial data and the solutions could be singular at certain points or decaying to zero at infinity with different rates in different spatial variable directions. Some of these singular rates could be very strong and some of the decaying rates could be significantly slow. Besides other interests, the results of the paper particularly show an interesting phenomena on the persistence of the anisotropic behavior of the initial data under the evolution. To achieve the goals, fundamental analysis theory such as Youngs inequality, time decaying of solutions for heat equations, the boundedness of the Helmholtz-Leray projection, and the boundedness of the Riesz tranfroms are developed in mixed-norm Lebesgue spaces. These fundamental analysis results are independently topics of great interests and they are potentially useful in other problems.
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural
We consider the compressible Navier-Stokes-Korteweg system describing the dynamics of a liquid-vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The
The Cauchy problem for the Hardy-Henon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space $mathbb{R}^d$. Well-posedness for singular initial data and existence of non-radial forward