ترغب بنشر مسار تعليمي؟ اضغط هنا

Well-posedness for the Navier-Stokes equations in critical mixed-norm Lebesgue spaces

86   0   0.0 ( 0 )
 نشر من قبل Tuoc Phan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Tuoc Phan




اسأل ChatGPT حول البحث

We study the Cauchy problem in $n$-dimensional space for the system of Navier-Stokes equations in critical mixed-norm Lebesgue spaces. Local well-posedness and global well-posedness of solutions are established in the class of critical mixed-norm Lebesgue spaces. Being in the mixed-norm Lebesgue spaces, both of the initial data and the solutions could be singular at certain points or decaying to zero at infinity with different rates in different spatial variable directions. Some of these singular rates could be very strong and some of the decaying rates could be significantly slow. Besides other interests, the results of the paper particularly show an interesting phenomena on the persistence of the anisotropic behavior of the initial data under the evolution. To achieve the goals, fundamental analysis theory such as Youngs inequality, time decaying of solutions for heat equations, the boundedness of the Helmholtz-Leray projection, and the boundedness of the Riesz tranfroms are developed in mixed-norm Lebesgue spaces. These fundamental analysis results are independently topics of great interests and they are potentially useful in other problems.



قيم البحث

اقرأ أيضاً

246 - Tuoc Phan 2018
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff icient conditions in mixed-norm Lebesgue spaces, solutions of the stationary Navier-Stokes equations are identically zero. This result covers the important case that solutions may decay to zero with different rates in different spatial directions, and some these rates could be significantly slow. In the un-mixed norm case, the result recovers available results. With some additional geometric assumptions on the supports of solutions, this work also provides several other important Liouville type theorems for solutions in weighted mixed-norm Lebesgue spaces. To prove the results, we establish some new results on mixed-norm and weighted mixed-norm estimates for Navier-Stokes equations. All of these results are new and could be useful in other studies.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities $rho_0,$ velocity fields $u_0$ and temperatures $theta_0$ with $a_0:=rho_0-1indot B^{frac np}_{p,1},$ $u_0indot B^{frac np-1}_{p,1}$ and $theta_0indot B^{frac np-2}_{p,1}.$ After recasting the whole system in Lagrangian coordinates, and working with the emph{total energy along the flow} rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is $ngeq2,$ and $1<p<2n.$ Back to Eulerian coordinates, this allows to improve the range of $p$s for which the system is locally well-posed, compared to Danchin, Comm. Partial Differential Equations 26 (2001).
We consider the compressible Navier-Stokes-Korteweg system describing the dynamics of a liquid-vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the sound speed may be greater than or equal to zero. By fully exploiting the parabolic property of the linearized system for all frequencies, we see that there is no loss of derivative usually induced by the pressure for the standard isentropic compressible Navier-Stokes system. This enables us to apply Banachs fixed point theorem to show the existence of global solution. Furthermore, we obtain the optimal decay rates of the global solutions in the $L^2(mathbb{R}^d)$-framework.
81 - Jinkai Li 2019
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The initial density is required to be nonnegative, which is not necessary to be uniformly away from vacuum. This not only generalizes the well-known result of Kazhikhov--Shelukhin (Kazhikhov, A.~V.; Shelukhin, V.~V.: emph{Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas}, J.,Appl.,Math.,Mech., bf41 rm(1977), 273--282.) from the heat conductive case to the non-heat conductive case, and the initial vacuum is allowed.
The Cauchy problem for the Hardy-Henon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space $mathbb{R}^d$. Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previously shown only for the Hardy and Fujita cases ($gammale 0$) in earlier works. The weighted spaces enable us to treat the potential $|x|^{gamma}$ as an increase or decrease of the weight, thereby we can prove well-posedness to the problem for all $gamma$ with $-min{2,d}<gamma$ including the Henon case ($gamma>0$). As a byproduct of the well-posedness, the self-similar solutions to the problem are also constructed for all $gamma$ without restrictions. A non-existence result of local solution for supercritical data is also shown. Therefore our critical exponent $s_c$ turns out to be optimal in regards to the solvability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا