ﻻ يوجد ملخص باللغة العربية
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramatic increase in the number and quality of classical pulsator observations, providing unprecedented possibilities to study stellar physics and galactic stellar populations. In this white paper, we describe key science questions and necessary facilities to continue the asteroseismology revolution into the 2020s.
The lowest-mass stars, brown dwarfs and giant exoplanets span a minimum in the mass-radius relationship that probes the fundamental physics of extreme states of matter, magnetism, and fusion. This White Paper outlines scientific opportunities and the
The evolution of a star is driven by the physical processes in its interior making the theory of stellar structure and evolution the most crucial ingredient for not only stellar evolution studies, but any field of astronomy which relies on the yields
Galactic binaries with orbital periods less than $approx$1 hr are strong gravitational wave sources in the mHz regime, ideal for the Laser Interferometer Space Antenna (LISA). In fact, theory predicts that emph{LISA} will resolve tens of thousands of
This paper outlines the importance of understanding jets from compact binaries for the problem of understanding the broader phenomenology of jet production. Because X-ray binaries are nearby and bright, have well-measured system parameters, and vary
The next decade affords tremendous opportunity to achieve the goals of Galactic archaeology. That is, to reconstruct the evolutionary narrative of the Milky Way, based on the empirical data that describes its current morphological, dynamical, tempora