ﻻ يوجد ملخص باللغة العربية
We study the energy spectrum of a two-dimensional electron in the presence of both a perpendicular magnetic field and a potential. In the limit where the potential is small compared to the Landau level spacing, we show that the broadening of Landau levels is simply expressed in terms of the structure factor of the potential. For potentials that are either periodic or random, we recover known results. Interestingly, for potentials with a dense Fourier spectrum made of Bragg peaks (as found, e.g., in quasicrystals), we find an algebraic broadening with the magnetic field characterized by the hyperuniformity exponent of the potential. Furthermore, if the potential is self-similar such that its structure factor has a discrete scale invariance, the broadening displays log-periodic oscillations together with an algebraic envelope.
We discuss the concept of discrete scale invariance and how it leads to complex critical exponents (or dimensions), i.e. to the log-periodic corrections to scaling. After their initial suggestion as formal solutions of renormalization group equations
This paper is a study of the behavior of experimentally observed stress-strain force during the fracture of a quantum wire. The magnitude of the force oscillates as a function of time and can be phenomenologically regarded as a sign of discrete-scale
We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean a system that replicates itself under
We present the analysis of the $N$-boson spectrum computed using a soft two-body potential the strength of which has been varied in order to cover an extended range of positive and negative values of the two-body scattering length $a$ close to the un
Log-periodic quantum oscillations discovered in transition-metal pentatelluride give a clear demonstration of discrete scale invariance (DSI) in solid-state materials. The peculiar phenomenon is convincingly interpreted as the presence of two-body qu