ﻻ يوجد ملخص باللغة العربية
There is a standard method to calculate the cohomology of torus-invariant sheaves $L$ on a toric variety via the simplicial cohomology of associated subsets $V(L)$ of the space $N_{mathbb R}$ of 1-parameter subgroups of the torus. For a line bundle $L$ represented by a formal difference $Delta^+-Delta^-$ of polyhedra in the character space $M_{mathbb R}$, [ABKW18] contains a simpler formula for the cohomology of $L$, replacing $V(L)$ by the set-theoretic difference $Delta^- setminus Delta^+$. Here, we provide a short and direct proof of this formula.
For any two nef line bundles F and G on a toric variety X represented by lattice polyhedra P respectively Q, we present the universal equivariant extension of G by F under use of the connected components of the set theoretic difference of Q and P.
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
We use the toric degeneration of Bott-Samelson varieties and the description of cohomolgy of line bundles on toric varieties to deduce vanishings results for the cohomology of lines bundles on Bott-Samelson varieties.